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Exercise 1-1 Convert the following quantities to scientific notation: (a) 52 mV, (b) 0.3 MV, (c) 136 nA, (d)

0.05 Gbits/s.

Solution:

(a) 52 mV = 52×10−3 V = 5.2×10−2 V

(b) 0.3 MV = 0.3×106 V = 3×105 V

(c) 136 nA = 136×10−9 A = 1.36×10−7 A

(d) 0.05 Gbits/s = 0.05×109 bits/s = 5×107 bits/s
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Exercise 1-2 Convert the following quantities to a prefix format such that the number preceding the prefix

is between 1 and 999: (a) 8.32×107 Hz, (b) 1.67×10−8 m, (c) 9.79×10−16 g, (d) 4.48×1013V, (e) 762 bits/s.

Solution:

(a) 8.32×107 Hz = 83.2×106 Hz = 83.2 MHz

(b) 1.67×10−8 m = 16.7×10−9 m = 16.7 nm

(c) 9.79×10−16 g = 979×10−18 g = 979 ag

(d) 4.48×1013 V = 44.8×1012 V = 44.8 TV

(e) 762 bits/s = 762 bits/s
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Exercise 1-3 Simplify the following operations into a single number, expressed in prefix format: (a) A =
10 µV+2.3 mV, (b) B = 4 THz−230 GHz, (c) C = 3 mm/60 µm.

Solution:

(a) A = 10 µV+2.3 mV = 10×10−3 ×10−3 V+2.3 mV

= 0.01 mV+2.3 mV = 2.31 mV

(b) B = 4 THz−230 GHz = 4 THz−230×10−3 THz

= 4 THz−0.23 THz = 3.77 THz

(c) C = 3 mm/60 µm = 3×10−3 m/60×10−6 m = 50
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Exercise 1-4 If the current flowing through a given resistor in a circuit is given by i(t) = 5[1− e−2t ] A for

t ≥ 0, determine the total amount of charge that passed through the resistor between t = 0 and t = 0.2 s.

Solution: Based on Eq. (1.6):

q(t) =
∫ t

−∞
i(t) dt

=
∫ 0.2

0
5[1− e−2t ] dt

= 5

[

t − e−2t

−2

]0.2

0

= 5[(0.2+0.5e−0.4)− (0+0.5e0)] C

= 0.18 C
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Exercise 1-5 If q(t) has the waveform shown in Fig. E1-5, determine the corresponding current waveform.

q(t)

t (s)
4 6 7 8

2 C

51 32

Figure E1-5

Solution: Based on Eq. (1.3), i(t) can be calculated and then plotted. First let’s express q and i as a function

of t:

q i

t < 0 0 0

0 ≤ t < 1 2t 2

1 ≤ t < 3 2 0

3 ≤ t < 4 8−2t −2

4 ≤ t < 5 −8+2t 2

5 ≤ t < 7 2 0

7 ≤ t < 8 16−2t −2

i(t) is equal to the slope of q(t).

i(t)

t (s)
6

2 A

−2 A
51 2 4 7 83
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Exercise 1-6 If a positive current is flowing through a resistor, from its terminal a to its terminal b, is υab

positive or negative?

Solution: If positive current is flowing from terminal a to terminal b of a resistor, then terminal a is at a higher

potential than terminal b making υab = (υa −υb) positive.
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Exercise 1-7 A certain device has a voltage difference of 5 V across it. If 2 A of current is flowing through

it from its (−) voltage terminal to its (+) terminal, is the device a power supplier or a power recipient, and how

much energy does it supply or receive in 1 hour?

Solution:

I =−2 A (flowing from negative to positive terminals)

V = 5 V

P =V I =−10 W

By passive sign convention, device is a power supplier.
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Exercise 1-8 A car radio draws 0.5 A of dc current when connected to a 12-V battery. How long does it take

for the radio to consume 1.44 kJ?

Solution:

P = IV = 0.5×12 = 6 W

∆t =
W

P
=

1.44

6
×103 = 240 s = 4 minutes.
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Exercise 1-9 Find Ix from the diagram in Fig. E1-9.

5 Ω

2 Ω

5 A Ix =
V1

V1

4

+
_

Figure E1-9

Solution:

V1 = 5×2 = 10 V

Ix =
V1

4
= 2.5 A.
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Exercise 1-10 In the circuit of Fig. E1-10, find I at (a) t < 0 and (b) t > 0.

3 Ω 4 Ω

12 V

t = 0

SPDTI

+

_

Figure E1-10

Solution:

(a) At t < 0,

I =
12

3
= 4 A.

(b) At t > 0,

I =
12

4
= 3 A.
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Exercise 2-1 A cylindrical resistor made of carbon has a power rating of 2 W. If its length is 10 cm and its

circular cross section has a diameter of 1 mm, what is the maximum current that can flow through the resistor

without damaging it?

Solution: According to Eq. (2.2),

R =
ρℓ

A
.

From Table 2-1, the resistivity of carbon is

ρ = 1.4×10−5 Ω-m,

and the cross-sectional area of the wire is

A = π

(

d

2

)2

= π × (0.5×10−3)2

= 7.85×10−7 m2.

Hence,

R =
1.4×10−5 ×10×10−2

7.85×10−7
= 1.78 Ω,

and from

Pm = I2
mR = 2 W,

Im =

√

2

R
=

√

2

1.78
= 1.06 A.
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Exercise 2-2 A rectangular bar made of aluminum has a current of 3 A flowing through it along its length.

If its length is 2.5 m and its square cross section has 1-cm sides, how much power is dissipated in the bar at

20◦C?

Solution: From Eq. (2.2) and Table 2-1,

R =
ρℓ

A
=

2.62×10−8 ×2.5

(10−2)2
= 6.55×10−4 Ω,

P = I2R = 32 ×6.55×10−4 = 5.9×10−3 W = 5.9 mW.
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Exercise 2-3 A certain type of diode exhibits a nonlinear relationship between υ , the voltage across it, and

i, the current entering into its (+) voltage terminal. Over its operational voltage range (0–1 V), the current is

given by

i = 0.5υ2, for 0 ≤ υ ≤ 1 V.

Determine how the diode’s effective resistance varies with υ and calculate its value at υ = 0, 0.01 V, 0.1 V,

0.5 V, and 1 V.

Solution: The effective resistance of the diode is:

R =
υ

i
=

υ

0.5υ2
=

1

0.5υ
=

2

υ
.

Hence,

υ R

0 ∞
0.01 V 200 Ω
0.1 V 20 Ω
0.5 V 4 Ω
1 V 2 Ω
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Exercise 2-4 If I1 = 3 A in Fig. E2-4, what is I2?

I1

I2

2 A10 V 2 Ω

4 Ω

+

_

Figure E2-4

Solution: KCL at the top center node requires that

I1 + I2 −2 A = 0.

Hence,

I2 = 2− I1 = 2−3 =−1 A.
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Exercise 2-5 Apply KCL and KVL to find I1 and I2 in Fig. E2-5.

I1

I2

4 A20 V 2 Ω

14 Ω

+

_

Solution: KCL at node 1 requires that

I1 = I2 +4.

Also, KVL for the left loop is

−20+4I2 +2I1 = 0.

Simultaneous solution leads to

I1 = 6 A, I2 = 2 A.
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Exercise 2-6 Determine Ix in the circuit of Fig. E2-6.

Solution:

1
2

4 Ω

2 Ω

2 Ω

8 Ω

4 A

+_ 2Ix

Ix

L1

I1 I2

I3

L2

KCL @ node 1: Ix = I1 +4

KCL @ node 2: I1 +4 = I2 + I3

KVL Loop 1: 4Ix +2I1 +8I3 = 0

KVL Loop 2: −8I3 +2I2 −2Ix = 0

We have four equations with four unknowns. Simultaneous solution leads to

Ix = 1.33.
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Exercise 2-7 Apply resistance combining to simplify the circuit of Fig. E2-7 so as to find I. All resistor

values are in ohms.

10 V

2

2 2

2 1

1 1

1

1
1

1 1

1
I

+

_

Figure E2-7

Solution: Combining all resistors that are in series will result in the following circuit:

+
-

10 V 24 4 2 2

2
1

+

_

Combining all resistors that are in parallel will result in:

+
-

10 V 2 1

1 1
Add resistors

in series+

_
+
-

10 V 2 2

1

+

_

+
-

10 V 1

1

+

_

I

+
-

10 V 2
+

_

I

I =
10 V

2 Ω
= 5 A.
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Exercise 2-8 Apply source transformation to the circuit in Fig. E2-8 to find I.

3 Ω

6 Ω

4 Ω12 V

I

10 A
+
_

Figure E2-8

Solution: Apply source transformation to the 12-V source and 6-Ω resistor:

3 Ω4 Ω2 A

I

10 A

Combine current sources and combine

3-Ω and 6-Ω resistors, while leaving 4-Ω

alone

6 Ω

4 Ω12 A

I

2 Ω

Current division gives

I =
12×2

2+4
= 4 A.
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Exercise 2-9 For each of the circuits shown in Fig. E2-9, determine the equivalent resistance between

terminals (a,b).

(a)

10 Ω 10 Ω

10 ΩReq

a

b

(b)

10 Ω 10 Ω

10 ΩReq

a

b

Figure E2-9

Solution:
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(a)

10 Ω 10 Ω

10 ΩReq

a

b

10 Ω

10 ΩReq 10 Ω

a

b

10 Ω

5 ΩReq

a

b

15 ΩReq

a

b

Req = 15 Ω.

(b) Applying Y-∆ transformation
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10 Ω
10 Ω

10 Ω

Req

a

b

c

n

30 Ω
30 Ω

30 Ω

Req

a

b

c

30 ΩReq

a

b

c

Req

a

b

Req = 0.
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Exercise 2-10 If in the sensor circuit of Fig. 2-37, V0 = 4 V and the smallest value of Vout that can be

measured reliably is 1 µV, what is the corresponding accuracy with which (∆R/R) can be measured?

Solution:

Vout =
V0

4

(

∆R

R

)

,

∆R

R
=

4Vout

V0

=
4×10−6

4
= 10−6
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Exercise 2-11 Determine I in the two circuits of Fig. E2-11. Assume VF = 0.7 V for all diodes.

(a) (b)

I

3 kΩ

2 kΩ

12 V

I

3 kΩ

2 kΩ

12 V

Figure E2-11

Solution:

(a) With VF = 0.7 V, KVL around the loop gives

−12+2×103I+0.7+3×103I +0.7 = 0,

which leads to

I =
12−1.4

5×103
= 2.12 mA.

(b) Since the diodes are biased in opposition to one another, no current can flow in the circuit. Hence

I = 0.
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Exercise 2-12 What would the output voltage associated with the circuit of Example 2-18 change to, if the

cantilever thickness is reduced by a factor of 2?

Solution:

Vout ∼
1

H2
.

Hence Vout will change to

Vout(new) =
Vout(old)

H2(new)
H2(old) =

−0.1

(0.5)2
=−0.4 V.
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Exercise 2-13 The circuit in Fig. E2-13 is called a resistive bridge. How does Vx = (V3 −V2) vary with the

value of potentiometer R1?

Figure E2-13

1

32

0

Solution: Using DC Operating Point Analysis and varying the value of the potentiometer, we obtain the

following values for (V3 −V2):

R1 (% of 1 kΩ) Vx =V2 −V3

100% 0 mV

80% 55.6 mV

60% 125 mV

40% 214 mV

20% 333 mV

0% 500 mV
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Exercise 2-14 Simulate the circuit shown in Fig. E2-14 and solve it for the voltage across R3. The magnitude

of the dependent current source is V1/100.

Figure E2-14

1 Ω
10 Ω

12 V
ABM_CURRENT

100 Ω
0

1 2 3

4

R3

R1

V1 R2
ABM

Solution: The circuit drawn in Multisim is shown below.

Note: The expression entered into the ABM CURRENT source was V(foo)/100. The node above the source V1

was renamed from “1” to “foo” (by double-clicking on the wire) to avoid confusing the expression for the source

voltage, vv(1), and the symbol for the node voltage, V(1). Once renamed, the symbol for the node becomes

V(foo) and the ABM CURRENT expression becomes V(foo)/100. Had we left the node with the name “1”,

the ABM CURRENT expression would have been V(1)/100.

The Measurement Probe on node 3 shows us that the voltage on R3, relative to ground, is 120 mV.
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Exercise 3-1 Apply nodal analysis to determine the current I.

4 Ω

10 Ω

1 Ω

6 Ω

24 V

I

+

_

Figure E3-1

Solution:

4 Ω
10 Ω

1 Ω

6 Ω

24 V

I

+

_

I2

I1 Va

I1 + I2 + I = 0

I1 =
Va

10
, I2 =

Va −24

10
, I3 =

Va

1

Hence,

Va

10
+

Va −24

10
+Va = 0,

Va

(

1

10
+

1

10
+1

)

=
24

10
,

which leads to

Va = 2 V, I =
Va

1
= 2 A.
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Exercise 3-2 Apply nodal analysis to find Va.

9 V

10 Ω

40 Ω

20 Ω

Va

Va

+
_

2
+_

+

_

+

_
+_

Figure E3-2

Solution:

9 V
10 Ω

40 Ω

20 Ω

Va

Va

+
_

2

+

_

+

_

+_

I1 I3

I2

VB

I1 + I2 + I3 = 0

I1 =
VB −9

20
, I2 =

VB −
Va

2
10

, I3 =
VB

40
.

Hence,

VB −9

20
+

VB −
Va

2
10

+
VB

40
= 0.

Also,

VA = 9−VB.

Solution gives: Va = 5 V.
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Exercise 3-3 Apply the supernode concept to determine I in the circuit of Fig. E3-3.

Figure E3.3

I

2 Ω

10 Ω

4 Ω

4 Ω

2 A 20 V

12 V

+
_

+_

Solution:

I

2 Ω

10 Ω

4 Ω

4 Ω

2 A 20 V

12 V

+
_

+_

I1

I3

I2V1 V2

(V1,V2) constitutes a supernode. Hence,

I1 + I+ I2 + I3 = 0,

I1 =−2 A, I =
V1

2
,

I3 =
V2

4
, I2 =

V2 −20

4
.

Also,

V2 −V1 = 12.

Solution leads to: I = 0.5 A.
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Exercise 3-4 Apply mesh analysis to determine I.

12 V 3 A4 Ω

4 Ω

I = ?

+

_

Figure E3-4

Solution:

+
-

12 V 3 A4 Ω

4 Ω

+

_ I1 I2

I

Mesh 1: −12+4I1 +4(I1 − I2) = 0

Mesh 2: I2 = 3 A

4I1 +4I1 −4×3 = 12

8I1 = 24

I1 = 3 A.

=⇒ I = I1 − I2 = 3−3 = 0.
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Exercise 3-5 Determine the current I in the circuit of Fig. E3-5.

60 V 20 Ω

4 Ω 6 Ω

I1

I

2

I1

+

_

+

_

Figure E3-5

Solution:

60 V 20 Ω

4 Ω 6 Ω

I1

I1
I

2

+

_

+

_ Ia Ib

Mesh 1: −60+10Ia +20(Ia − Ib) = 0

Mesh 2: Ib =
I1

2

Also,

I1 = Ia.

Hence,

Ib =
Ia

2
,

−60+10Ia +20

(

Ia −
Ia

2

)

= 0,

which simplifies to

20I1 = 60

or

Ia = 3 A,

I = Ia − Ib = Ia −
Ia

2
=

Ia

2
=

3

2
= 1.5 A.
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Exercise 3-6 Apply mesh analysis to determine I in the circuit of Fig. E3-6.

I

2 Ω 5 Ω

3 Ω

4 A 3 A

Figure E3-6

Solution:

I

2 Ω 5 Ω

3 Ω

4 A 3 AI1 I2 I3

Outside mesh: 2I1 +3I2 +5I3 = 0.

Also,

I2 − I1 = 4 A, I2 − I3 = 3 A.

Hence,

I1 = I2 −4 = (I3 +3)−4 = I3 −1

I2 = I3 +3

2(I3 −1)+3(I3 +3)+5I3 = 0

10I3 = 2−9

I3 =−0.7 A

I = I3 =−0.7 A.
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Exercise 3-7 Apply the node-analysis by-inspection method to generate the node voltage matrix for the

circuit in Fig. E3-7.

2 Ω 5 Ω

3 Ω

4 A 3 A

V1 V2

Figure E3.7

Solution:

G11 =
1

3
+

1

2
=

5

6
, G22 =

1

3
+

1

5
=

8

15
, G11 =

5

6
,

G12 =−1

3
= G21, G22 =

8

15
.

Hence,






5

6
−1

3

−1

3

8

15















V1

V2









=









4

−3









.

By MATLAB software,
[

V1

V2

]

=

[

3.4 V

−3.5 V

]

.
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Exercise 3-8 Use the by-inspection method to generate the mesh current matrix for the circuit in Fig. E3-8.

6 Ω

5 Ω

12 Ω

20 Ω
10 Ω

I1 I2

I3

4 V

8 V

2 V

+

_

+ _

+

_

+

_

+ _

Figure E3-8

Solution:

R11 = 5+10 = 15

R22 = 10+20+6 = 36

R33 = 20+12 = 32

R12 = R21 =−10

R13 = R31 = 0

R23 = R32 =−20

Hence,

R =





15 −10 0

−10 36 −20

0 −20 32





V =





8+4 = 12

−8

−2





I = R−1V =





0.7505

−0.0743

−0.1089





∴ I1 = 0.75 A

I2 =−0.07 A

I3 =−0.11 A
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Exercise 3-9 Apply the source-superposition method to determine the current I in the circuit of Fig. E3-9.

I

2 Ω 5 Ω

3 Ω

4 A 3 A

Figure E3-9

Solution:

I

2 Ω 5 Ω

3 Ω

4 A 3 A

I

2 Ω 5 Ω

3 Ω

15 V8 V +
_+

_

I3 Ω

7 Ω
23 V

+ _

I =
23

3+7
= 2.3 A.
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Exercise 3-10 Apply source superposition to determine Vout in the circuit of Fig. E3-10.

Vout2 Ω 1 Ω

3 Ω

3 A 4 A
+

−

Figure E3-10

Solution:
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Vout2 Ω 1 Ω

3 Ω

3 A 4 A
+

−

Vout

2 Ω

1 Ω

3 Ω
12 V

6 V

+

−

+

_

+ _

Vout

5 Ω

1 Ω
6 V

+

−
+

_

By voltage division,

Vout =
−6×1

5+1
=−1 V.
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Exercise 3-11 Determine the Thévenin-equivalent circuit at terminals (a,b) in Fig. E3-11.

Figure E3.11

2 Ω 5 Ω

3 Ω

4 A 3 A

a

b

Solution:

(1) Open-circuit voltage

We apply node voltage method to determine open-circuit voltage:

2 Ω 5 Ω

3 Ω

4 A 3 A

a

b

Voc

V1 V2

+

_

V1

2
−4+

V1 −V2

3
= 0,

V2 −V1

3
+3+

V2

5
= 0.

Solution gives: V2 =−3.5 V.

Hence,

VTh =Voc =−3.5 V.

(2) Short-circuit current

2 Ω
5 Ω

3 Ω

4 A 3 A

Isc

V1 V2

I2 = 0

I1
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Because of the short circuit,

V2 = 0.

Hence at node V1:

V1

2
−4+

V1

3
= 0

V1

(

1

2
+

1

3

)

= 4

V1 =
24

5
V

I1 =
V1

3
=

24

5×3
=

8

5
A,

Isc = I1 −3 =
8

5
−3 =−7

5
=−1.4 A

RTh =
VTh

Isc

=
−3.5

−1.4
= 2.5 Ω.

Thévenin equivalent:

a

b

2.5 Ω

3.5 V
+

_
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Exercise 3-12 Find the Thévenin equivalent of the circuit to the left of terminals (a,b) in Fig. E3-12, and

then determine the current I.

1 Ω

20 V 5 A

Ia

b

0.6 Ω

3 Ω

5 Ω

5 Ω

2 Ω

+

_

+

_

Figure E3-12

Solution: Since the circuit has no dependent sources, we will apply multiple steps of source transformation to

simplify the circuit.

1 Ω

20 V

10 V

Ia

b

0.6 Ω

3 Ω

5 Ω

5 Ω

2 Ω

+

_

+

_

1 Ω

10 V

Ia

b

0.6 Ω

3 Ω

12 Ω

+

_

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuit Analysis and Design



Across (a,b),

VTh =Voc =
10×3

12+3
= 2 V

RTh = 3 ‖ 12+0.6

=
3×12

3+12
+0.6 = 3 Ω

Hence,

1 Ω2 V

I3 Ω

+

_

I =
2

3+1
= 0.5 A.
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Exercise 3-13 Find the Norton equivalent at terminals (a,b) of the circuit in Fig. E3-13.

I

a

b

3 Ω

10 Ω

3I

2 A

Figure E3-13

Solution: Thévenin voltage

I
a

b

3 Ω

10 Ω

3I

3I

2 A

Node 1

Voc

+

_

At node 1:

I = 2 A.

Hence,

VTh =Voc = 10I −3×3I = I = 2 V.

Next, we determine the short-circuit current:

I 3 Ω

10 Ω

3I

2 A

I1

Isc

V1
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At node V1:

−2−3I+
V1

10
+

V1

3
= 0.

Also,

I =
V1

10
.

Hence,

−2−3I+ I+
10

3
I = 0,

which gives

I = 1.5 A,

I1 = 2+3I − I = 2+2I = 5 A,

Isc = 5−3I = 5−4.5 = 0.5 A.

RTh =
VTh

Isc

=
2

0.5
= 4 Ω.

Norton circuit is:

4 Ω0.5 A

a

b
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Exercise 3-14 The bridge circuit of Fig. E3-14 is connected to a load RL between terminals (a,b). Choose

RL such that maximum power is delivered to RL. If R = 3 Ω, how much power is delivered to RL?

RL

R

a b

R

2R

2R

24 V
+

_

+

_

Figure E3-14

Solution: We need to remove RL and then determine the Thévenin equivalent circuit at terminals (a,b).
Open-circuit voltage:

R

a b

R

2R

2R

24 V
+

_

+

_

I1 I2

The two branches are balanced (contain same total resistance of 3R). Hence, identical currents will flow, namely

I1 = I2 =
24

3R
=

8

R
.

Voc =Va −Vb = 2RI1 −RI2 = RI1 = R
8

R
= 8 V.

To find RTh, we replace the source with a short circuit:
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R

a

c

c

c

b

R

2R

2R

a b

R2R
2RR

R ‖ 2R =
R×2R

R+2R
=

2

3
R

a b

c

2R
3

2R
3

a b

4R
3

Hence,

RTh =
4R

3
,

and the Thévenin circuit is

a b

4R
3

RL

8 V

+ _
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For maximum power transfer with R = 3 Ω, RL should be

RL =
4R

3
=

4×3

3
= 4 Ω,

and

Pmax =
υ2

s

4RL

=
82

4×4
= 4 W.
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Exercise 3-15 Determine IB, Vout1 , and Vout2 in the transistor circuit of Fig. E3-15, given that VBE = 0.7 V

and β = 200.

Figure E3.15

IB

2 V
8 V

Vout2

Vout1

+

_

+

_

200 Ω

100 Ω

5 kΩ

Solution: Using the equivalent-circuit model:

IC

IE

IB

2 V

8 VE

CB

Vout2

200IB

Vout1

0.7 V 200 Ω

5 kΩ

100 Ω
I1 I2

Loop 2

I2 =−200IB =−200I1

Loop 1

−2+ I1(5000)+0.7+100(I1 − I2) = 0

−1.3+5100I1 +20000I1 = 0

or

25100I1 = 1.3,
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which gives

1.3 = 25,100I1

I1 = IB = 0.00005179 A = 51.79 µA

IB = 51.79 µA

IC = 200IB = 10.36 mA

Vout2 = 8−200IC = 8−2.07 = 5.93 V

IE = IB + IC = 10.41 mA

Vout1 = 100IE = 1.041 V.
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Exercise 3-16 Use Multisim to calculate the voltage at node 3 in Fig. 3-38(b) when the SPDT switch is

connected to position 2.

(a) Circuit with SPDT switch

SPDT

2 V Vx

1 V

1

2

I = 0.1Vx

50 Ω

50 Ω

1 A50 Ω

100 Ω 75 Ω

+

_

+

_

+_

(b) Multisim configuration

Solution: From Probe 1, we can see that V(3) = 13.0 mV.
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Exercise 4-1 In the circuit of Example 4-1, shown in Fig. 4-5, insert a series resistance Rs between υs and υp,

and then repeat the solution to obtain an expression for G. Evaluate G for Rs = 10 Ω, and use the same values

listed in Example 4-1 for the other quantities. What impact does the insertion of Rs have on the magnitude

of G?

Ri

R1

R2

Ro

Rs vp

a

b

i4

i3

i2

vo

vn

vs

i1

i1

+

+

A(vp − vn)
_ +_

+

_

+

_ +_

+_

Solution:

At node a :
υn −υo

R1

=
υo −A(υp −υn)

Ro

.

At node b :
υn −υp

Ri

+
υn

R2

+
υn −υo

R1

= 0.
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Additionally,

υp = υs + i1Rs

= υs +

(

υn −υp

Ri

)

Rs.

Solving the three equations simultaneously leads to

G =
υo

υs

=
[A(Ri +Rs)(R1 +R2)+R2Ro]

[AR2(Ri +Rs)+Ro(R2 +Ri +Rs)
+R1R2 +(Ri +Rs)(R1 +R2)]

.

For Rs = 10 Ω, Ri = 107 Ω, R0 = 10 Ω, R1 = 80 kΩ, R2 = 20 kΩ, and A = 106,

G = 4.999977 ≃ 5.0.
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Exercise 4-2 To evaluate the tradeoff between the circuit gain G and the linear dynamic range of υs, apply

Eq. (4.8) to find the magnitude of G, and then determine the corresponding dynamic range of υs, for each of

the following values of R2: 0 (no feedback), 800 Ω, 8.8 kΩ, 40 kΩ, 80 kΩ, 1 MΩ. Except for R2, all other

quantities remain unchanged.

Solution:

G =
ARi(R1 +R2)+R2Ro

AR2Ri +Ro(R2 +Ri)+R1R2 +Ri(R1 +R2)

υo = Gυs

|υo|max = υcc = 10 V.

Hence,

|υs|max =
10

G
.

For A = 106, Ri = 107 Ω, R1 = 80 kΩ, Ro = 10 Ω, we obtain the following table:

R2 G υs Range

0 106 −10 µV to +10 µV

800 Ω 101 −99 mV to +99 mV

8.8 kΩ 10.1 −0.99 V to +0.99 V

40 kΩ 3 −3.3 V to +3.3 V

80 kΩ 2 −5 V to +5 V

1 MΩ 1.08 −9.26 V to +9.26 V
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Exercise 4-3 Consider the noninverting amplifier circuit of Fig. 4-9(a), under the conditions of the ideal

op-amp model. Assume Vcc = 10 V. Determine the value of G and the corresponding dynamic range of υs for

each of the following values of R1/R2: 0, 1, 9, 99, 103, 106.

Solution:

G =
υo

υs

=
R1 +R2

R2

,

|υo|max =Vcc = 10 V ,

|υs|max =
10

G
.

Using these expressions leads to the following table:

R1/R2 G υs Range

0 1 −10 V to +10 V

1 2 −5 V to +5 V

9 10 −1 V to +1 V

99 100 −0.1 V to +0.1 V

1000 ≈ 1000 −10 mV to +10 mV (Approx.)

106 ≈ 106 −10 µV to +10 µV (Approx.)
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Exercise 4-4 The input to an inverting-amplifier circuit consists of υs = 0.2 V and Rs = 10 Ω. If Vcc = 12 V,

what is the maximum value that Rf can assume before saturating the op amp?

Solution:

G =−Rf

Rs

,

|υo|max =Vcc = 12 V.

At saturation

|υs|=
|υo|max

G
.

Hence, maximum allowed value of |G| is

|G|= |υo|max

υs

=
12

0.2
= 60,

which corresponds to

Rf = |G|Rs = 60×10 = 600 Ω.
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Exercise 4-5 The circuit shown in Fig. 4-13(a) is to be used to perform the operation

υo = 3υ1 +6υ2.

If R1 = 1.2 kΩ, Rs2
= 2 kΩ, and Rf2

= 4 kΩ, select values for R2 and Rf1
so as to realize the desired result.

Solution:

(a) Two-stage circuit

Rf1

vp1

vo1

vn1

v1

v2

+

−
R2

R1

+
-

+
-

Rf2

vp2

vo2

vn2

+

−
Rs2

Stage 1 Stage 2

−vo1
=

Rf1
Rf1

R1
v1 +

R2
v2( ) −( ) −( )vo2

=
Rf2

Rs2

vo1

+

_ +

_

Given the output-input relations for the two stages, it follows that

υo2
=

(

−Rf2

Rs2

)

υo1
=

(

−Rf2

Rs2

)[(

−Rf1

R1

)

υ1 +

(

−Rf1

R2

)

υ2

]

,

=

(

Rf1
Rf2

R1Rs2

)

υ1 +

(

Rf1
Rf2

R2Rs2

)

υ2.

We are given that R1 = 1.2 kΩ, Rs2
= 2 kΩ, and Rf2

= 4 kΩ. Additionally, to match the required operation, we

need to have

Rf1
Rf2

R1Rs2

= 3,

Rf1
Rf2

R2Rs2

= 6.

The ratio of these two conditions gives

R2

R1

=
1

2
, or R2 =

R1

2
=

1200

2
= 600 Ω.

Finally,

4×103Rf1

1.2×103 ×2×103
= 3

leads to

Rf1
= 1.8 kΩ.
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Exercise 4-6 The difference-amplifier circuit of Fig. 4-15 is used to realize the operation

υo = (6υ2 −2) V.

Given that R3 = 5 kΩ, R4 = 6 kΩ, and R2 = 20 kΩ, specify values for υ1 and R1.

Solution:

υo =

(

R4

R3 +R4

)(

R1 +R2

R1

)

υ2 −
R2

R1

υ1 .

To satisfy the required operation, it is necessary that

(

R4

R3 +R4

)(

R1 +R2

R1

)

= 6.

Given that R3 = 5 kΩ, R4 = 6 kΩ, and R2 = 20 kΩ, it follows that

R1 = 2 kΩ.

To satisfy the second term of the operation, we need to have

(

R2

R1

)

υ1 = 2,

or

υ1 =
2R1

R2

=
2×2×103

20×103
= 0.2 V.
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Exercise 4-7 Express υo in terms of υ1, υ2 and υ3 for the circuit in Fig. E4-7.

υo

υ1

υ2

+

3 kΩ

5 kΩ

10 kΩ

0.5 kΩ

1 kΩ

υ3
2 kΩ

_

+

_

Figure E4-7

Solution: Starting from the output of the second stage and moving backwards towards the inputs,

υo =

(

−10×103

5×103

)[(

− 3×103

0.5×103

)

υ1 +

(−3×103

103

)

υ2 +

(−3×103

2×103

)

υ3

]

= 12υ1 +6υ2 +3υ3.
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Exercise 4-8 To monitor brain activity, an instrumentation-amplifier sensor uses a pair of needle-like probes,

inserted at different locations in the brain, to measure the voltage difference between them. If the circuit is of

the type shown in Fig. 4-22, with R1 =R3 =R4 =R5 =R = 50 kΩ and Vcc = 12 V, and the maximum magnitude

of the voltage difference that the brain is likely to exhibit is 3 mV, what should R2 be to maximize the sensitivity

of the brain sensor?

Solution:

υo =

(

1+
2R

R2

)

(υ2 −υ1).

We are given that υ2 −υ1 = 3 mV and to avoid saturation |υo|max should not exceed Vcc. Hence,

1+
2R

R2

=
|υo|max

|υ2 −υ1|
=

12

3×10−3
= 4000,

and

R2 +
2R

4000−1
≈ 2×50×103

4×103
= 25 Ω.
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Exercise 4-9 A 3-bit DAC uses an R-2R ladder design with R = 3 kΩ and Rf = 24 kΩ. If Vcc = 10 V, write

an expression for Vout and evaluate it for [V1V2V3] = [111].

Solution:

Vout =−
(

Rf

RTh

)

VTh,

with

RTh = R,

and

VTh =
V1

2
+

V2

4
+

V3

8
.

With Rf = 24 kΩ and R = 3 kΩ,

Vout =−(4V1 +2V2 +V3).

For [V1V2V3] = [111], Vout =−7 V.
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Exercise 4-10 In the circuit of Example 4-9, what value of RD will give the highest possible ac gain, while

keeping υout(t) always positive?

Solution:

Vout =VDD −gRD υs(t)

=VDD −gRD(500+40cos 300t)×10−6

= (VDD −500gRD ×10−6)−40gRD ×10−6 cos300t.

Maximizing the ac gain without allowing υout to go negative is accomplished by selecting RD such that

40gRD ×10−6

VDD −500gRD ×10−6
= 1.

Given that VD = 10 V and g = 10 A/V, it follows that

RD = 1.85 kΩ.
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Exercise 4-11 Repeat Example 4-10, but require that υout be at least 99.9% of υs. What should RL be: (a)

without the buffer, and (b) with the buffer?

Solution:

Without Buffer

RL

Rs

= 999, or RL = 999×100 = 99.9 kΩ.

With Buffer

υo

υs

= 0.999 =
9RL

1+gRL

.

With g = 10 A/V,

RL = 99.9 Ω.
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Exercise 4-12 Why are the voltage followers necessary in the circuit of Fig. 4-35? Remove them from the

Multisim circuit and connect the resistive bridge directly to the two inputs of the differential amplifier. How

does the output vary with the potentiometer setting?

Solution:

The voltage followers are necessary because they have a high input impedance; this high impedance prevents

any currents from running between the bridge and the high gain amplifier (particularly resistor R8 in Fig. 4-33),

effectively isolating the two components. Consider our analysis of the Wheatstone bridge in Section 2-6;

applying the same analysis to Fig. 4-33 assumes that all of the current through R3 flows through R5 and all

of the current through R1 flows through R2. This assumption is only true if the input impedance seen across
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node 3 and node 4 is much higher than the resistances of the bridge (otherwise, non-negligible current will flow

through the op-amps, lowering the value of the voltage between node 3 and node 4).

Removing the two voltage followers will result in a lower voltage across nodes 3 and 4, and thus, a lower

output voltage. This is shown in the figure below.

The best way to see this is to remove the two voltage followers from the circuit and raise the resistances of all

four Wheatstone bridge resistors to, say, 100 kΩ. Re-run the Interactive Simulation. Notice the difference in

the voltage output with (blue line) and without (red line) the voltage followers; when plotting this figure, R3

was varied from an initial value of 100% (100 kΩ) to 0% (0% kΩ). In the author’s computer, TMAX and the

Initial Time Step were set to 1e-5 s under Simulate −→ Interactive Simulation Settings.
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Exercise 4-13

The I-V Analyzer is another useful Multisim instrument for analyzing circuit performance. To demonstrate

its utility, let us use it to generate characteristic curves for an NMOS transistor, similar to those in Fig. 4-27(b).

Figure E4-13(a) shows an NMOS connected to an I-V Analyzer. The instrument sweeps through a range of

gate (G) voltages and generates a current-versus-voltage (I-V) plot between the drain (D) and source (S) for

each gate voltage. Show that the display of the I-V analyzer is the same as that shown in Fig. E4-13(b).

(a)

(b)

VGS = 5 V

VGS = 3.75 V

VGS = 2.5 V

VGS = 1.25 V

VGS = 0

Fig. E4-13: (a) Circuit schematic and (b) I-V analyzer traces for IDS versus VDS at selected values of VGS.
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Solution: Draw your circuit as in Fig. E4-13(a). Double click on the IV Analyzer; it should look like the figure

below.

Select NMOS under the Components drop-down menu; press the Lin (linear plot) button for both the Current
Range and Voltage Range. Set current and voltage values as shown in the figure. You can generate Figure

E4-13(b) by opening the Grapher windows and formatting accordingly.
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Exercise 5-1 Express the waveforms shown in Fig. E5-1 in terms of unit step functions.

(a)

υ

t (s)
2 4

10

−10

(b)

υ

t (s)
2 4

5

−5

0

0

Figure E5-1

Solution:

(a)

42
t (s)

10

−20

−10

−20u(t − 2)

10u(t − 4)
10u(t)

υ(t) = 10u(t)−20u(t −2)+10u(t −4).
(b)
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−10u(t − 2)

−2.5r(t − 4)

slope = 2.5

slope = −2.5

2.5r(t)

t (s)2 4 6

5

−5

0

υ(t) = 2.5r(t)−10u(t −2)−2.5r(t −4).
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Exercise 5-2 How is u(t) related to u(−t)?

Solution:

u(−t) u(t)

t
0

u(−t) is the mirror image of u(t) with respect to the vertical axis.
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Exercise 5-3 Consider the SPDT switch in Fig. 5-6(a). Assume that it started out at position 2, was moved

to position 1 at t = 1 s, and then moved back to position 2 at t = 5 s. This is the reverse of the sequence shown

in Fig. 5-6(a). Express υ(t) in terms of (a) units step functions and (b) the rectangle function.

Solution:

1 3 5
t (s)

V0

0

(a) υ(t) =V0[u(1− t)+u(t −5)]
(b) υ(t) =V0 −V0 rect

(

t−3
4

)

[rectangle center at 3 s and length = 4 s].
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Exercise 5-4 The radioactive decay equation for a certain material is given by n(t) = n0e−t/τ , where n0 is

the initial count at t = 0. If τ = 2×108 s, how long is its half-life? [Half-life t1/2 is the time it takes a material

to decay to 50% of its initial value.]

Solution: Given

n(t) = n0e−t/(2×108),

The time t at which n(t) = n0/2 is obtained by solving for t in

n0

2
= n0e−t/(2×108),

or

ln
1

2
=

−t

2×108
,

which gives t =−2×108 ln2 = 1.386×108 s = 4 years, 144 days, 12 hours, 10 minutes, and 36 s.
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Exercise 5-5 If the current i(t) through a resistor R decays exponentially with a time constant τ , what is the

value of the power dissipated in the resistor at t = τ , compared with its value at t = 0?

Solution:

p(t) = i2R = I2
0 R(e−t/τ )2 = I2

0 Re−2t/τ ,
(

p(τ)

p(0)

)

= e−2 = 0.135, or 13.5%.
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Exercise 5-6 It is desired to build a parallel-plate capacitor capable of storing 1 mJ of energy when the

voltage across it is 1 V. If the capacitor plates are 2 cm × 2 cm each, and its insulating material is Teflon, what

shold the separation d be? Is such a capacitor practical?

Solution:

w =
1

2
Cυ2,

10−3 =
1

2
C12, =⇒ C = 2×10−3 F,

C =
εA

d
, and ε = 2.1ε0 for Teflon.

Hence,

2×10−3 =
2.5×8.85×10−12 × (0.02)2

d
,

which yields

d = 3.72×10−12 m.

Certainly, not practical.
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Exercise 5-7 Instead of specifying A and calculating the spacing d needed to meet the 1-mJ requirement in

Exercise 5-6, suppose we specify d as 1 µm and then calculate A. How large would A have to be?

Solution:

C = 0.002 =
2.1×8.85×10−12 A

10−6
,

which gives

A = 10.4 m×10.4 m.

Equally impractical size.
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Exercise 5-8 Determine the current i in the circuit of Fig. E5-8, under dc conditions.

i
2 μF

1 μF

20 kΩ
40 kΩ

5 kΩ 15 kΩ

1.5 A

Figure E5-8

Solution: Under dc conditions, capacitors act like open circuits. Hence, the circuit becomes:

i

20 kΩ

40 kΩ

5 kΩ 15 kΩ

1.5 A

Voltage division gives

i = 1.5× 40k

40k+15k+5k
= 1 A.
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Exercise 5-9 Determine Ceq and Veq(0) at terminals (a,b) for the circuit in Fig. E5-9, given that

C1 = 6 µF, C2 = 4 µF and C3 = 8 µF, and the initial voltages on the three capacitors are υ1(0) = 5 V and

υ2(0) = υ3(0) = 10 V.

C1
C2

υ1
a

b

υ2 C3 υ3

+

+ _

_

+

_

Figure E5-9

Solution:

Ceq =
C1(C2 ‖C3)

C1 +C2 +C3

=
C1(C2 +C3)

C1 +C2 +C3

=
6×10−6(4×10−6 +8×10−6)

(6+4+8)×10−6
= 4 µF,

Veq(0) = υ1(0)+υ2(0) = 5+10 = 15 V.
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Exercise 5-10 Suppose the circuit of Fig. E5-9 is connected to a dc voltage source V0 = 12 V. Assuming

that the capacitors had no charge before they were connected to the voltage source, determine υ1 and υ2, given

that C1 = 6 µF, C2 = 4 µF, and C3 = 8 µF.

Solution:

C1
C2

v1

v2 C3 v3

+

+ _

_

+

_

+

_12 V

According to Eq. (5.46),

C1υ1 = (C2 ‖C3)υ2,

or

υ2 =
C1υ1

C2 +C3

=
6×10−6

4×10−6 +8×10−6
υ1 =

υ1

2
.

But

υ1 +υ2 = 12 V.

Hence,

υ1 = 8 V and υ2 = 4 V.
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Exercise 5-11 Calculate the inductance of a 20-turn air-core solenoid if its length is 4 cm and the radius of

its circular cross section is 0.5 cm.

Solution:

L =
µN2S

ℓ
=

4π ×10−7 ×202 ×π(0.005)2

0.04

= 0.987 µH.
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Exercise 5-12 Determine currents i1 and i2 in the circuit of Fig. E5-12, under dc conditions.

6 kΩ

4 kΩ6 A

i2i1

L2 L3

L1

Figure E5-12

Solution: Under dc conditions, inductors act like short circuits.

6 kΩ

4 kΩ6 A

i2i1

L2 L3

L1

The 6-A current will flow entirely through the short circuit representing L3. Hence,

i1 = 0, i2 = 6 A.
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Exercise 5-13 Determine Leq at terminals (a,b) in the circuit of Fig. E5-13.

12 mH

a

b

6 mH

2 mH

Figure E5-13

Solution:

Leq = 2 mH+(6 mH ‖ 12 mH)

=

(

2+
6×12

6+12

)

mH

= 6 mH.
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Exercise 5-14 If in the circuit of Fig. E5-14, υ(0−) = 24 V, determine υ(t) for t ≥ 0.

υC

+

_

t = 0
5 μF20 kΩ

Figure E5-14

Solution:

υ(t) = υ(0) e−t/τ

= υ(0) e−t/RC

= 24e−10t V, for t ≥ 0.
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Exercise 5-15 Determine υ1(t) and υ2(t) for t ≥ 0, given that in the circuit of Fig. E5-15 C1 = 6 µF,

C2 = 3 µF, R = 100 kΩ, and neither capacitor had any charge prior to t = 0.

υ1C1

R

+

_

+

_12 V
υ2C2

t = 0

Figure E5-15

Solution:

υ1(0) = υ2(0) = 0 [given]

υ1(∞)+υ2(∞) = 12 V [At t = ∞, capacitors act like open circuits]

C1υ1(∞) =C2υ2(∞), [Eq. (5.46)].

Hence,

C1υ1(∞) =C2[12−υ1(∞)],

which leads to

υ1(∞) = 12
C2

C1 +C2

= 4 V,

υ2(∞) = 12−4 = 8 V.

Also,

τ = RCeq = R
C1C2

C1 +C2

= 0.2 s.

Hence,

υ1(t) = υ1(∞)+ [υ1(0)−υ1(∞)]e−t/τ

= 4(1− e−5t) V, for t ≥ 0,

υ2(t) = υ2(∞)+ [υ2(0)−υ2(∞)]e−t/τ

= 8(1− e−5t) V, for t ≥ 0.
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Exercise 5-16 Determine i1(t) and i2(t) for t ≥ 0, given that in the circuit of Fig. E5-16 L1 = 6 mH, L2 =
12 mH, and R = 2 Ω. Assume i1(0

−) = i2(0
−) = 0.

L1R1.8 A L2

i1 i2t = 0

Figure E5-16

Solution:

i1(t) =
1

L1

∫ t

0
υ(t) dt

=
1.8R

L1

∫ t

0
e−500t dt

=
1.8R

L1

[

e−500t

−500

]t

0

=
1.8×2

500L1

(1− e−500t)

= 1.2(1− e−500t) u(t) A,

i2(t) =
1

L2

∫ t

0
υ(t) dt

=
1

12×10−3

∫ t

0
υ(t) dt

= 0.6(1− e−500t) u(t) A.
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Exercise 5-17 The input signal to an ideal integrator circuit with RC = 2×10−3 s and Vcc = 15 V is given

by υs(t) = 2sin100t V. What is υout(t)?

Solution:

υout(t) =− 1

RC

∫ t

t0

υi dt +υout(t0).

Assuming the integration started at t0 = 0 at which time υout(0) = 0,

υout(t) =− 1

2×10−3

∫ t

0
2sin 100t dt

=
2

2×10−3 ×100
cos(100t)|t0

= 10[cos(100t)−1] V.
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Exercise 5-18 Repeat Exercise 5-17 for a differentiator instead of an integrator.

Solution:

υout(t) =−RC
dυi

dt

=−2×10−3 d

dt
[2sin(100t)]

=−0.4cos(100t) V.
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Exercise 5-19 A CMOS inverter with Cn
D +C

p
D = 20 fF has a fall time of 1 ps. What is the value of its gain

constant?

Solution:

tfall =
Cn

D +C
p
D

g
,

g =
Cn

D +C
p
D

tfall

=
20×10−15

10−12
= 2×10−2 A/V.
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Exercise 6-1 For the circuit in Fig. E6-1, determine υC(0), iL(0), υL(0), iC(0), υC(∞), iL(∞).

Figure E6.1

iL

υC

υL4 Ω

6 Ω10 V t = 0 C

L
+
_

iC

Solution:

Before t = 0:

vC(0−)

iL(0−)
4 Ω

6 Ω10 V C
+
_

υC(0) = υC(0
−) =

6

4+6
10 = 6 V,

iL(0) = iL(0
−) =

10

4+6
= 1 A.

After t = 0:

iL

vC

vL

6 Ω C

L

iC
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υL(0) =−υC(0) =−6 V,

iC(0) = iL(0)−
υC(0)

6
= 0 A,

υC(∞) = 0 V (no sources and closed loop access to resistors),

iL(∞) = 0 A (no sources and closed loop access to resistors).
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Exercise 6-2 For the circuit in Fig. E6-2, determine υC(0), iL(0), υL(0), iC(0), υC(∞), and iL(∞).

Figure E6.2

iL

υC

υL 4 Ω

2 Ω 12 V

t = 0L

+
_C

iC

Solution:

Before t = 0:

vC

vL

2 Ω

L

C

iC

iL(0−)

Hence:

υC(0) = υC(0
−) = 0 V (no sources and closed loop access to resistors),

iL(0) = iL(0
−) = 0 A.

After t = 0:

iL

vC

vL 4 Ω

2 Ω 12 V

L

+
_C

iC
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υL(0) = υC(0)− iL(0)×4−12 =−12 V,

iC(0) =
υC(0)

2
= 0 A,

υC(∞) =
2

2+4
12 V = 4 V,

iL(∞) =
υC(∞)−12

4
=−2 A.

4 Ω

2 Ω 12 V

L

+
_CvC(   )8

iL(   )8
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Exercise 6-3 After interchanging the locations of L and C in Fig. 6-9(a), repeat Example 6-4 to determine

υc(t) across C.

υLC

R1

R2

Rs Is

t = 0iC

Solution:

Before t = 0:

C

R2

Rs Is
iL(0−)

υC(0−)

υC(0) = υC(0
−) = 0 V (assume capacitor initially uncharged),

iL(0) = iL(0
−) =

Rs

R2 +Rs

Is =
10

0.2+10
2 = 1.961 A.

After t = 0:

C
L

R1

R2

υC

iC

iL
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iC(0) =−iL(0) =−1.961 A,

υ ′
C(0) =

iC(0)

C
=− 1.961

5×103
=−392.2 V/s,

R = R1 +R2 = 2.01 Ω.

Since R, L, and C are the same as in Example 6-4:

α =
R

2L
= 201 Np/s,

ω0 =
1√
LC

= 200 rad/s,

s1 =−α +
√

α2 −ω2
0 =−181 Np/s,

s2 =−α −
√

α2 −ω2
0 =−221 Np/s.

Apply new initial conditions:

υC(0) = A1 +A2 = 0,

υ ′
C(0) = s1A1 + s2A2 =−392.2,

which leads to

A1 =− 392.2

s1 − s2

=− 392.2

−181− (−221)
=−9.79 V,

A2 =−A1 = 9.79 V,

υC(t) = (A1es1t +A2es2t) u(t),

υC(t) = 9.79(e−221t − e−181t) u(t) V.
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Exercise 6-4 The switch in Fig. E6.4 is moved to position 2 after it had been in position 1 for a long time.

Determine: (a) υC(0) and iC(0), and (b) iC(t) for t ≥ 0.

υC

20 Ω 10 Ω

40 V1 H 10 mF

2 1

t = 0

+
_

iC

Figure E6.4

Solution:

Before t = 0:

20 Ω 10 Ω

40 V
+
_iL(0−) υC(0−)

υC(0) = υC(0
−) = 40 V,

iL(0) = iL(0
−) = 0 A.

After t = 0:

υC

20 Ω

1 H 10 mFυL

iC
iL
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iC(0) =−iL(0) = 0 A,

υ ′
C(0) =

iC(0)

C
= 0,

α =
R

2L
=

20

2×1
= 10,

ω0 =
1√
LC

=
1√

1×0.01
= 10.

Since α = ω0, the circuit is critically damped. Apply initial conditions:

υC(t) = (B1 +B2t)e−αt u(t),

υ ′
C(t) = [−(B1 +B2t)αe−αt +B2e−αt ] u(t),

υ ′
C(t) = [(1−αt)B2 −αB1]e

−alt u(t),

υC(0) = B1,

B1 = υC(0) = 40,

υ ′
C(0) = B2 −αB1,

B2 = υ ′
C(0)+αB1,

B2 = 0+10×40 = 400,

iC(t) =Cυ ′
C(t),

=C[(1−αt)B2 −αB1]e
−αt u(t),

= 0.01[(1−10t)400−10×40]e−10t u(t),

=−40te−10t u(t) A.
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Exercise 6-5 The circuit in Fig. E6.5 is a replica of the circuit in Fig. E6.4, but with the capacitor and

inductor interchanged in location. Determine: (a) iL(0) and υL(0), and (b) iL(t) for t ≥ 0.

υC

20 Ω 10 Ω

40 V1 H 10 mF

2 1

t = 0

+
_

iC

Figure E6.5

Solution:

Before t = 0:

10 Ω20 Ω

40 VC
+
_iL(0−)υC(0−)

υC(0) = υC(0
−) = 0 V,

iL(0) = iL(0
−) =

40

10
= 4 A.

After t = 0:

υLυC

20 Ω

1 H10 mF

iL
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Since the capacitor is initially a short circuit:

υL(0) =−20iL(0) =−20×4 =−80 V,

α =
R

2L
=

20

2×1
= 10,

ω0 =
1√
LC

=
1√

1×0.01
= 10.

The circuit is critically damped.

iL(t) = (B1 +B2t)e−αt u(t),

i′L(t) = [(1−αt)B2 −αB1]e
−αt u(t),

B1 = iL(0) = 4,

B2 = i′L(0)+αB1 =
υL(0)

L
+αB1,

=−80

1
+10×4 =−40.

Hence

iL(t) = 4(1−10t)e−10t u(t) A.
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Exercise 6-6 Repeat Example 6-4 after replacing the 8 V source with a short circuit and changing the value

of R1 to 1.7 Ω.

Solution:

υCL

R1

R2

Rs Is

t = 0iL

Before t = 0:

C

R1 Rs

R2

iL(0−) = 0
υ(0−) = Vs

+

_ Vs = IsRs

where we used source transformation on (Is,Rs). From the circuit

υ(0) = υ(0−) = IsRs = 20 V,

iL(0) = iL(0
−) = 0 A.

After t = 0:

C
L

R1 + R2

υ
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υ ′(0) =
iC(0)

C
=− iL(0)

C
= 0,

α =
R

2L
=

R1 +R2

2L
=

1.7+0.2

2×0.005
= 190,

ω0 =
1√
LC

=
1√

0.005×0.005
= 200,

ωd =
√

ω2
0 −α2 =

√

2002 −1902 = 62.45,

υ(t) = (D1 cos ωdt +D2 sinωdt)e−αt u(t),

υ(0) = D1,

D1 = υ(0) = 20,

D2 =
α υ(0)

ωd

=
190×20

62.45
= 60.85,

υ(t) = (20cos 62.45t +60.85sin 62.45t)e−190t u(t) V.
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Exercise 6-7 Determine the initial and final values for iL in the circuit of Fig. E6.7, and provide an expression

for iL(t).

iL

υL

40 Ω15 mA

2 H

5 mF t = 0 80 Ω

+ _

Figure E6.7

Solution:

Before t = 0:

40 Ω15 mA 80 Ω

iL(0−)

vC(0−)

υC(0) = 0.015(40 Ω ‖ 80 Ω) = 0.015
40×80

40+80
= 0.4,

iL(0) =
υC(0)

80
=

0.4

80
= 0.005.

After t = 0:

iL

vL
vC40 Ω15 mA

2 H

5 mF

+ _
+

_
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i′L(0) =
υL(0)

L
=

υC(0)

L
=

0.4

2
= 0.2,

iL(∞) = 0.015 (L acts like a short circuit at t = ∞)

α =
1

2RC
=

1

2×40×0.005
= 2.5,

ω0 =
1√
LC

=
1√

2×0.005
= 10 rad/s,

ωd =
√

ω2
0 −α2 = 9.68 rad/s.

iL(t) = [iL(∞)+ e−αt(D1 cosωdt +D2 cosωdt)],

D1 = iL(0)− iL(∞) = 0.005−0.015 =−0.010,

D2 =
i′L +α [iL(0)− iL(∞)]

ωd

= 0.01808.

Hence,

iL(t) =
{

15− [10cos 9.68t −18.08sin 9.68t]e−2.5t
}

mA.
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Exercise 6-8 In the parallel RLC circuit shown in Fig. 6-13(b), how much energy will be stored in L and C

at t = ∞?

L
R C

+

_Is u(t) v(t)

iR
iCi(t)

Solution: At t = ∞, L is a short circuit:

vC(∞) = 0,

wC(∞) = 0,

iL(∞) = Is,

wL(∞) =
1

2
L i2L(∞) =

1

2
LI2

s .
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Exercise 6.9 Develop an expression for iC(t) in the circuit of Fig. E6.14 for t ≥ 0.

iC
+
_

iLt = 0

CL
I0

Figure E6.9

Solution:

Before t = 0:

υC(0) = 0,

iL(0) = 0.

After t = 0:

i′L(0) =
υL(0)

L
=

υC(0)

L
= 0,

iL(∞) = I0,

α =
1

2RC
=

1

2×∞×C
= 0,

ω0 =
1√
LC

.

Since α is less than ω0, the circuit is underdamped:

ωd =
√

ω2
0 −α2 = ω0,

D1 = iL(0)− iL(∞) = 0− I0 =−I0,

D2 =
i′L(0)+αD1

ωd

=
0−0× I0

ω0

= 0,

iL(t) = iL(∞)+ [D1 cosωdt +D2 sinωdt]e−αt ,

iL(t) = I0 − I0 cos ω0t = I0(1− cosω0t),

iC(t) = I0 − iL(t) = I0 − (I0 − I0 cosω0t)

= I0 cosω0t.

Hence, without a resistor in the circuit, the circuit behaves like an oscillator.
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Exercise 6.10 For the circuit in Fig. E6.10, determine iC(t) for t ≥ 0.

iC
+
_

iLt = 0

CL
I0

Figure E6.10

Solution:

Before t = 0, there are no sources:

υC(0) = 0,

iL(0) = 0.

At t = 0:

iC(0) = 2− iL(0) = 2,

i′L(0) =
υL(0)

L
=

R iC(0)

L
=

3×2

2
= 3.

iCiL

L C

2 A

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuit Analysis and Design



After t = 0:

R iL(t)+L
diL

dt
= R iC(t)+ vC(t),

iL(t) = 2− iC(t),

diL

dt
=−diC

dt
,

R[2− iC(t)]−L
diC

dt
= R iC(t)+υC(t),

2R−L
diC

dt
= 2R iC(t) = υC(t),

−LC
d2iC

dt2
= 2RC

diC

dt
+C

dυC

dt
,

d2iC

dt2
+

2R

L

diC

dt
+

1

LC
iC(t) = 0,

i′′C +
2R

L
i′C +

1

LC
iC = 0,

i′C(0) =−i′L(0) =−3,

iC(∞) = 0,

a =
2R

L
=

2×3

2
= 3,

b =
1

LC
=

1

2×0.02
= 25,

α =
a

2
= 1.5,

ω0 =
√

b = 5.

The circuit is underdamped:

ωd =
√

ω2
0 −α2 =

√

25−1.52 = 4.77,

D1 = iC(0)− iC(∞) = 2−0 = 2,

D2 =
i′C(0)+αD1

ωd

=
−3+1.5×2

4.77
= 0,

iC(t) = [iC(∞)+ (D1 cos ωdt +D2 sin ωdt)e−αt ] u(t),

iC(t) = (2e−αt cos 4.77t) u(t) A.
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Exercise 6.11 Given the component values in the Multisim circuit of Fig. 6-18, what are the values of ω0

and α for the circuit response?

Solution:

ω0 =
1√
LC

=
1√

0.3×5.33×10−3
= 25.0 rad/s,

α =
R

2L
=

1

2×0.3
= 1.67 Np/s,

ωd =
√

ω2
0 −α2 =

√

25.02 −1.672 = 24.95 rad/s.

Exercise 6-12 Is the natural response for the circuit in Fig. 6-18 over-, under-, or critically damped? You

can determine this both graphically (from the oscilloscope) and mathematically, by comparing ω0 and α .

Position 1

Position 2

Solution: α < ω0, so the circuit is underdamped, as is evident in the circuit’s oscillatory response.
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Exercise 6-13 Modify the value of R in the circuit of Fig. 6-18 so as to obtain a critically damped response.

Position 1

Position 2

Solution: For a critically damped circuit, α = ω0:

α =
R

2L
= ω0 = 25.0,

R

2×0.3
= 25.0,

R = 15.0 Ω.

Exercise 6-14 Calculate ω0, α , and ωd for the RLC circuit in Fig. 6-22. How do ω0 and ωd compare with

the angular frequency of the current source? This result, as we will learn later when we study resonant circuits

in Chapter 9, is not at all by coincidence.

Solution:

ω0 =
1√
LC

=
1√

10−3 ×10−6
= 31.6×103,

α =
1

2RC
=

1

2×103 ×10−6
= 500,

ωd =
√

ω2
0 −α2 =

√

(31.6×103)2 −5002 = 31.6×103 rad/s.

The angular frequency of the current source is:

ωsrc = 2π fsrc = 2π ×5033 = 31.6×103 rad/s,

which is the same as ω0 and ωd.

Exercise 6-15 Ideally, we would like the response of the RFID tag to take a very long time to decay down

to zero, so as to contain as many digital bits as possible. What determines the decay time? Change the values

of some of the components in Fig. 6-22 so as to decrease the damping coefficient by a factor of 2.
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Solution: The decay time of the RFID is determined by the damping coefficient α . To reduce α by a factor of

two:

α =
1

2RC
=

500

2
= 250.

Leave C unchanged at 1 µF and solve for R:

1

2R×10−6
= 250,

or

R = 2000 Ω.
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Exercise 7-1 Provide an expression for a 100-V, 60-Hz voltage that exhibits a minimum at t = 0.

Solution:

υ(t) = Acos(2π f t +φ),

A = 100 V (given),

f = 60 Hz (given).

At t = 0, υ(t) is a minimum. Hence,

υ(0) =−A = Acosφ1 =⇒ φ = 180◦,

and

υ(t) = 100cos(120π +180◦) V.
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Exercise 7-2 Given two current waveforms:

i1(t) = 3cos ωt,

i2(t) = 3sin(ωt +36◦),

does i2(t) lead or lag i1(t) and by what phase angle?

Solution:

i1(t) = 3cos ωt,

i2(t) = 3sin(ωt +36◦)

= 3cos(90◦−ωt −36◦)

= 3cos(ωt +36−90◦)

= 3cos(ωt −54◦).

Since φ2 < φ1, i2(t) lags i1(t) by 54◦.
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Exercise 7-3 Express the following complex functions in polar form:

z1 = (4− j3)2,

z2 = (4− j3)1/2.

Solution:

z1 = (4− j3)2

= [
+
√

42 +32 e− j tan−1 3/4]2 = (5e− j36.87◦ )2 = 25e− j73.74◦

Z2 = (4− j3)1/2

=
[

+
√

42 +32 e− j tan−1 3/4
]1/2

=±
√

5 e− j18.43◦ .
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Exercise 7-4 Show that
√

2 j =±(1+ j).

Solution:

√

2 j =
√

2e j90◦

=±
√

2 e j45◦

=±
√

2

(

cos 45◦+ j sin45◦

2

)

=±
√

2

(√
2+ j

√
2

2

)

=±(1+ j).
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Exercise 7-5 Determine the phasor counterparts of the following waveforms:

(a) i1(t) = 2sin(6×103t −30◦) A,

(b) i2(t) =−4sin(1000t +136◦) A.

Solution:

i1(t) = 2sin(6×103t −30◦) A

= 2cos(6×103t −30◦−90◦) A.

Hence, φ1 =−120◦.

I1 = 2∠−120◦ A,

i2(t) =−4sin(1000t +136◦) A

= 4sin(1000t +136◦−180◦) A

= 4cos(1000t +136◦−180◦−90◦) A

= 4cos(1000t −134◦) A.

Hence φ2 =−134◦,

I2 = 4∠−134◦ A.
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Exercise 7-6 Obtain the time-domain waveforms (in standard cosine format) corresponding to the following

phasors, at angular frequency ω = 3×104 rad/s:

(a) V1 = (−3+ j4) V,

(b) V2 = (3− j4) V.

Solution:

(a)

V1 = (−3+ j4) V

=
√

32 +42 e j126.87◦ (second quadrant),

υ1(t) = 5cos(3×104t +126.87◦) V.

(b)

V2 = (3− j4) V

=
√

32 +42 e j(−53.13◦) (fourth quadrant),

υ2(t) = 5cos(3×104t −53.13◦) V.
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Exercise 7-7 At ω = 106 rad/s, the phasor voltage across and current through a certain element are given

by: V = 4∠−20◦ V and I = 2∠70◦ A. What type of element is it?

Solution:

Z =
V

I
=

4e− j20◦

2e j70◦ = 2e− j90◦ =− j2 Ω.

Hence, it is a capacitor and from

− j2 =
− j

ωC
,

C =
1

2ω
= 0.5 µF.
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Exercise 7-8 Repeat the analysis of the circuit in Example 7-4 for υs(t) = 20cos(2×103t +60◦) V, R =
6 Ω, and L = 4 mH.

6 Ω

4 mH
+
−~vs(t)

Solution:

Step 1:

υs(t) = 20cos(2×103t +60◦),

Vs = 20e j60◦ .

Step 2: Circuit to Phasor Domain

ZL = jωL = j2×103 ×4×10−3 = j8 Ω.

6 Ω

j8 Ω20e j60o
+

_

Step 3: KVL in Phasor Domain

RI+ jωLI = Vs,

6I+ j8I = 20e j60◦ .

Step 4: Solve for Unknown Variable

I =
20e j60◦

6+ j8
=

20e j60◦

10e j53.13◦ = 2∠6.9◦ A.

Find Inductor Voltage:

VL = jωLI = ( j8)(2∠6.9◦)

= 16∠96.9◦ V.
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Step 5: Convert Back to Time Domain

υL(t) =Re[VLe jωt ]

=Re[16e j96.9◦e j2×103t ].

υL(t) = 16cos(2×103t +96.9◦) V.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuit Analysis and Design



Exercise 7-9 Determine the input impedance at ω = 105 rad/s for each of the circuits in Fig. E7-9.

(a)

(b)

2 μF

0.1 mH
Zi

2 μF 0.1 mHZi

Figure E7.9

Solution:

(a)

Zi = ZL +ZC

= jωL− j

ωC

= j×105 × (0.1×10−3)− j

(105)(2×10−6)

= j5 Ω.

(b)
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Zi =

(

1

ZC

+
1

ZL

)−1

=

(

jωC+
1

jωL

)−1

=

[−(105)(2×10−6)

j
+

1

j(105)(0.1×10−3)

]−1

=

[ −2+1

j(105)(0.1×10−3)

]−1

=

[ −1

j(105)(0.1×10−3)

]−1

=− j10 Ω.
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Exercise 7-10 Convert the Y-impedance circuit in Fig. E7-10 into a ∆-impedance circuit.

j5 Ω

j5 Ω

1

2 3

−j10 Ω

Figure E7-10

Solution:

Z1 = j5 Ω,

Z2 = j5 Ω,

Z3 =− j10 Ω,

Z1Z2 +Z2Z3 +Z1Z3 = ( j5)( j5)+ ( j5)(− j10)+ ( j5)(− j10)

= j225−2× j250

=−25+100

= 75 (Ω)2.

From Eq. (7.86a),

Za =
Z1Z2 +Z2Z3 +Z1Z3

Z1

=
75

j5
=− j15 Ω.

From Eq. (7.86b),

Zb =
Z1Z2 +Z2Z3 +Z1Z3

Z2

=
75

j5
=− j15 Ω.

From Eq. (7.86c),

Zc =
Z1Z2 +Z2Z3 +Z1Z3

Z3

=
75

− j10
=− j7.5 Ω.

So
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1

2 3

−j15 Ω

−j15 Ωj7.5 Ω

1

2

=

3

ZaZc

Zb
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Exercise 7-11 Determine VTh and ZTh for the circuit in Fig. E7-11 at terminals (a,b).

+
_ Z2

Z1

aI

5I

b

5 Ω

(10 + j30) Ω

10 V

Figure E7-11

Solution:

VTh:

KCL at Va:

−I+
Va

5
−5I = 0,

6I =
Va

5
.

Also,

I =
10−Va

10+ j30
.

Hence,

6

(

10−Va

10+ j30

)

=
Va

5
,

60

10+ j30
= Va

(

6

10+ j30
+

1

5

)

.

Simplifying leads to

Va =
60

8+ j6

VTh = Va = 6∠−36.9◦ V.

RTh:

Remove source and add external source Vext:
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Z2

I2

Vext

Va
Z1

I

5I

(10 + j30) Ω

5 Ω

+

_

Iext

At node Va:

−I+ I2 −5I− Iext = 0.

Also,

I2 =
Vext

Z2

=
Vext

5
,

I =
Vext

Z1

=
Vext

10+ j30
.

Substitution and simplification lead to

Iext = (0.26− j0.18)Vext.

Hence,

RTh =
Vext

Iext

=
1

0.26− j0.18
= (2.6+ j1.8) Ω.
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Exercise 7-12 Establish the relative phasor diagram for the circuit in Fig. E7-12 with V as the reference

phasor.

Figure E7.12

Y1 = 0.4 S Y2 = j0.6 S

V

I1 I2

I0 = 1        A0o

Solution:

I1 = VY1

= 0.4V,

I2 = VY2

= j0.6V,

I0 = I1 + I2

= 0.4V+ j0.6V

= (0.721∠56.3◦)V.

I2 = j0.6V

I1 = 0.4V V

I0 = I1 + I2 

56.3o
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Exercise 7-13 Repeat Example 7-11, but use only two stages of RC phase shifters.

Solution:

vs

v1 v2
vout

RR

C C

+

_

+
−~
+

_

At node V1 in phasor domain:
V1 −Vs

ZC

+
V1

R
+

V1

ZC +R
= 0.

Also,

Vout = V2 = V1

R

ZC +R
.

Substitution and simplification leads to

Vout

Vs

=
R4ω4C4 −R2ω2C2 + j3ω3R3C3

(R4ω4C4 −1)2 +9ω2R2C2
.

Hence

φ2 =− tan−1

(

3ω3R3C3

R4ω4C4 −R2ω2C2

)

=− tan−3

(

3ωRC

ω2R2C2 −1

)

.

For φ2 = 120◦, ω = 103 rad/s, and C = 1 µF, solution for R gives

R = 2.189 kΩ ≃ 2.2 kΩ.

[Mathematically, we get a second solution, namely R = −456.8, which we reject.] Using R = 2.2 kΩ in the

expression for Vout/Vs gives
∣

∣

∣

∣

Vout

Vs

∣

∣

∣

∣

= 0.634.
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Exercise 7-14 Design a two-stage RC phase shifter that provides a phase shift of negative 120◦ at ω = 104

rad/s. Assume C = 1 µF.

Solution: For negative phase shift, flip capacitor and inductor positions.

vs

v1 v2

vout

RR

C C
+

_

+
−~

KVL at node 1:
V1 −Vs

R
+

V1

ZC

+
V1 −V2

R
= 0. (1)

Also,

Vout = V2 = V1

ZC

ZC +R
.

Solution leads to

Vout

Vs

=
−(−1+R2ω2C2 + j3ωRC)

(−1+R2ω2)2 +9ω2R2C2
,

and

φ2 = tan−1

(

3ωRC

ω2R2C2 −1

)

.

For φ2 =−120◦,

tan(−120◦) = 1.732 =

(

3ωRC

ω2R2C2 −1

)

.

For ω = 104 rad/s and C = 1 µF,

R = 218.89 Ω or R =−45.68 Ω.

Negative resistance solution is rejected. Hence,

R ≃ 220 Ω.
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Exercise 7-15 Write down the node-voltage matrix equation for the circuit in Fig. E7-15.

2 A −j4 S
(2 + j2) S

4         (A)60o

V1 V2

Figure E7.15

Solution: KCL at node V1:

−2+4∠60◦+(V1 −V2)(2+ j2) = 0,

V1(2+ j2)+V2[−(2+ j2)] = 2−4∠60◦. (1)

KCL at node V1:

−4∠60◦+(V2 −V1)(2+ j2)+V2(− j4) = 0,

V1[−(2+ j2)]+V2(2− j2) = 4∠60◦. (2)

Put (1) and (2) into matrix form:

[

(2+ j2) −(2+ j2)
−(2+ j2) (2− j2)

][

V1

V2

]

=

[

2−4e j60◦

4e j60◦

]

.

Alternatively, direct application of Eq. (7.102) leads to the same matrix equation.
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Exercise 7-16 Write down the mesh-current matrix equation for the circuit in Fig. E7-16.

12 V j6 V
3 Ω

2 Ω 4 Ω

j6 Ω

+
_

+
_I1 I2

Figure E7-16

Solution: For mesh current I1:

−12+2I1 +(3+ j6)(I1 − I2) = 0,

I1(5+ j6)+ I2[−(3+ j6)] = 12. (1)

For mesh current I2:

j6+(3+ j6)(I2 − I1)+4I2 = 0,

I1 + I2[−(3+ j6)]+ I2(7+ j6) =− j6.. (2)

Put (1) and (2) into matrix form:

[

(5+ j6) −(3+ j6)
−(3+ j6) (7+ j6)

][

I1

I2

]

=

[

12

− j6

]

.

Alternatively, direct application of Eq. (7.108) leads to the same matrix equation.
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Exercise 7-17 Suppose the input voltage in the circuit of Fig. 7-38 is a 10 V amplitude square wave. What

would the output look like?

Solution:

vin(t)

t
1 3 4

−10 V

10 V

2

vout(t)

t

8.6 V

υout(t) = |υin(t)|−2VF

= 10−2×0.7 = 8.6 V.
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Exercise 7-18 Determine the amplitude and phase of V(6) in the circuit of Example 7-21, relative to those

of V(1).

Solution:

The figure above shows a plot of V(6) and V(1) as in Fig. 7-42. Note that x1 for V(1) is 2.7250 µs and x2 for

V(6) is 2.7459 µs. The time difference between the two values is

∆t = 2.7459 µs−2.7250 µs = 0.0209 µs,

given that f = 10 MHz, T = 0.1 µs and

φ = 360◦
(

0.0209

0.1

)

= 75.24◦.
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Exercise 8-1 Determine the average and rms values of the waveform

υ(t) = 12+6cos 400t V.

Solution: From Eq. (8.5),

Vav =
1

T

∫ T

0
υ(t) dt.

ω = 2π f =
2π

T
= 400 rad/s,

T =
2π

400
s.

Vav =
400

2π

∫ 2π/400

0
(12+6cos400t) dt

=
400

2π

[

∫ 2π/400

0
12 dt +

∫ 2π/400

0
6cos(400t) dt

]

.

The average of a cosine function over a full cycle is zero. Hence, second term = 0.

Vav =
400

2π
(12t)

∣

∣

2π/400

0

= 12 V.

For Eq. (8.14),

Vrms =

√

1

T

∫ T

0
x2(t) dt

=

√

400

2π

∫ 2π/400

0
(12+6cos 400t)2 dt

=

[

400

2π

(

∫ 2π/400

0
144 dt +

∫ 2π/400

0
144cos 400t dt +

∫ 2π/400

0
36cos2(400t) dt

)]1/2

.

First term = 144

Second term = 0

Third term:
400

2π

∫ 2π/400

0
36cos2(400t) dt = 18.

Hence,

VRMS =
√

144+0+18 = 12.73 V.
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Exercise 8-2 Determine the average and rms value of the waveform

i(t) = 8cos 377t −4sin(377t −30◦) A.

Solution: Determine average and rms value of the waveform.

Iav: Average of sinusoid is zero so the average of the sum of two sinusoids is also zero.

Hence, Iav = 0.

Irms: From Eq. (8.14):

Irms =

√

1

T

∫ T

0
x2(t) dt

=

[

377

2π

∫ 2π/377

0
(8cos(377t)−4sin(377t −30◦))2 dt

]1/2

=

{

377

2π

[

64cos2(377t)−64cos(377t)sin(377t −30◦)

+16sin2(377t −30◦)
]

dt

}1/2

=

{

377

2π

[

64

∫ 2π/377

0
cos2(377t) dt

−64

∫ 2π/377

0
cos(377t)sin(377t −30◦) dt

+16

∫ 2π/377

0
sin2(377t −30◦) dt

]}1/2

.

Use the following identities:

∫

cos2 x dx =
1

4
sin(2x)+

x

2
∫

sin2 x dx =−1

4
sin(2x)+

x

2
∫

cos(ax)sin(ax+b) dx =
x

2
sin(b) =

cos(2ax+b)

4a
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For first term:

∫ 2π/377

0
cos2(377t) dt =

1

377

∫ 2π

0
cos2(x) dx

=
1

377

[

1

4
sin(2x)+

x

2

]
∣

∣

∣

∣

2π

0

=
π

377
.

For second term:

∫ 2π/377

0
cos(377t)sin(377t −30◦) dt =

t

2
sin(−30◦)− cos(754t −30◦)

1508

∣

∣

∣

∣

2π/377

0

=
π

377
sin(−30◦)− cos(−30◦)

1508
+

cos(−30◦)
1508

=
π

377
sin(−30◦).

For third term:

∫ 2π/377

0
sin2(377t −30◦) dt =

1

377

[

−1

4
sin(−60◦)+

1

4
sin(−60◦)+

2π −30◦

2
+

30◦

2

]

=
π

377
.

Irms =

{

377

2π

[

64π

377
− 64π

377
sin(−30◦)+

16π

377

]}1/2

= (56)1/2

= 7.48 A.
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Exercise 8-3 The voltage across and current through a certain load are given by:

υ(t) = 8cos(754t −30◦) V,

i(t) = 0.2sin 754t A.

What is the average power consumed by the load, and by how far in time is i(t) shifted relative to υ(t)?

Solution: From the expressions for the voltage and current:

φv =−30◦, Vm = 8 V,

φi =−90◦, Im = 0.2 A.

Using Eq. (8.23),

Pav =
VmIm

2
cos(φv −φi)

=
8×0.2

2
cos(−30◦− (−90◦))

= 0.4 W.

Also,

φv −φi =−30◦− (−90◦) = 60◦ =
π

3
radians.

Hence,

∆t =
(φv −φi

ω
=

π
3

(radians)

754
(

radians
second

) = 1.39 ms.
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Exercise 8-4 The current flowing into a load is given by i(t) = 2cos2500t (A). If the load is known to

consist of a series of two passive elements, and S = (10− j8) (VA), determine the identities of the elements

and their values.

Solution: From the expression for i(t):

Im = 2 A, and φi = 0◦.

From Eq. (8.31b),

Irms =
Im√

2
e jφi =

2√
2
= 1.414 A.

From the expression for S,

Pav = 10 W.

Using Eq. (8.40a),

Pav = I2
rmsR =⇒ R =

10

(1.414)2
= 5 Ω.

Also,

Q =−8 (VAR).

Using Eq. (8.40b),

Q = I2
rmsX

X =
−8

(1.414)2
=−4 Ω.

Hence,

− j4 =
− j

ωC
.

At ω = 2500 rad/s,

C =
1

4ω
= 100 µF.
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Exercise 8-5 At 60 Hz, the impedance of a RL load is ZL = (50+ j50) Ω. (a) What is the value of the power

factor of ZL and (b) what will be the new power factor if a capacitance C = 1
12π mF is added in parallel with

the RL load?

Solution:

(a)

R = 50 Ω, X = 50 Ω,

φZ1
= tan−1

(

X

R

)

= tan−1

(

50

50

)

= 45◦.

From Eq. (8.49a),

pf 1 = cos(φZ)

= cos(45◦)

= 0.707.

(b) With
(

1
12

π
)

mF capacitor at 60 Hz:

ZC =
− j

(

10−3

12π

)

(60)(2π)

=− j100 Ω.

Parallel combination:

ZC ‖ ZL =
(− j100)(50+ j50)

50− j50
= 100 Ω.

For purely real impedance,

φZ = tan−1(0) = 0◦,

and

pf 2 = cos(0◦) = 1.
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Exercise 8-6 Use Multisim to simulate the circuit in Fig. 8-15. Connect Channel B of the oscilloscope

across the voltage source Vs. Vary CM over its full range, noting the phase difference between the two channels

of the oscilloscope at CM = 0, CM = 25 µF, and CM = 50 µF.

31.250 mW 31.250 mW

Solution: The best way to observe the changes that CM has on the phase difference between VS and V7 is to

run the Interactive Simulation, but set the Maximum Time Step (under Simulate → Interactive Simulation
Settings → Maximum Time Step) to something very small (e.g., 1e-7 seconds). This will force the

oscilloscope trace to plot slowly with respect to any interactive adjustment of the value of CM (using the mouse

slider or the keyboard).

• Notice there is a small phase difference at CM = 50 µF. Fig. E8-8a shows the plot of the oscilloscope

trace with cursors.

For CM = 50 µF, x1 on VS = 1.2500 ms, x2 on V7 = 1.2449 ms.

∆t = 10.2500 ms−10.2449 ms = 0.0051 ms.

Given that f = 1 kHz, T = 1 ms and

φ = 360◦
(

0.0051

1

)

= 1.836◦.

• As one reduces the value of CM, the phase difference disappears. For CM = 25 µF, ∆t = 0 ms.

• However, below 25 µF, the phase difference increases to a maximum difference of −19.47◦.

• For CM = 0 µF, ∆t = 0 ms.
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Figure E8.6a

Figure E8-6b plots the phase difference as a function of CM. This plot was generated in MATLAB software

using Eq. (8.78) and voltage division:

∠V7 = ∠

[(

Rs

Rs +ZLoad+Match

)

Vs

]

.

Note: The angle function in MATLAB software can be used to plot the phase angle in radians of any function.
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Figure E8.6b
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Exercise 9-1 A series RL circuit is connected to a voltage source Vs. Obtain an expression for H(ω) =
VR/Vs, where VR is the phasor voltage across R. Also, determine the corner frequency of H(ω).

Solution:

L

R
+

_ VRVs

By voltage division,

VR =
R

R+ZL

Vs,

or

H(ω) =
VR

Vs

=
R

R+ jωL
=

R(R− jωL)

R2 +ω2L2
.

Corner frequency ωc is the value of ω at which the magnitude of H(ω) is equal to 1/
√

2 of its peak value. The

magnitude of H(ω) is

M(ω) = |H(ω)|= R√
R2 +ω2L2

,

and its peak value is at ω = 0. Thus

M0 = M(ω)|max = 1.

Setting H(ωc) = 1/
√

2 is equivalent to

1

2
=

R2

R2 +ω2
c L2

,

whose solution is

ωc =
R

L
.
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Exercise 9-2 Obtain an expression for the input impedance of the circuit in Fig. E9-2, and then use it to

determine the resonant frequency.

Figure E9.2

Zin

L

R

C

Solution:

Zin =

(

1

ZC

+
1

R+ZL

)−1

=
ZC(R+ZL)

R+ZL+ZC

=
(1/ jωC)(R+ jωL)

R+ jωL+(1/ jωC)

=
R+ jωL

(1−ω2LC)+ jωRC

=
[R(1−ω2LC)+ω2RLC]+ j[ωL(1−ω2LC)−ωR2C]

(1−ω2LC)2 +ω2R2C2
.

Resonance occurs when imaginary part of Zin is zero. Thus,

ω0L(1−ω2
0 LC)−ω0R2C = 0,

which leads to

ω0 = 0,

which is a trivial solution, and

ω0 =

√

1

LC
− R2

L2
.
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Exercise 9-3 Determine: (a) Zin of the prototype circuit shown in Fig. E9-3 at ω = 1 rad/s and (b) Z′
in of the

same circuit after scaling it by Km = 1000 and Kf = 1000.

Figure E9.3

Zin C = 1 F

R = 1 ΩR = 2 Ω

Ix

2Ix

Solution:

Vex

I1

1 F

1 Ω2 Ω

Ix

Ix

2Ix

+

_

R2

C1

R1

(a) Since the circuit contains a dependent source, we use the external voltage source method. Also, current

continuity requires that the current flowing through the 2-Ω resistor be the same as that flowing through the

capacitor. Also I1 = Ix.

KVL gives

−Vex +2Ix − Ix + IxZC = 0,

which leads to

Zin =
Vex

Ix

= (1− j1) Ω [for ω = 1 rad/s and C = 1 F].
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(b) With km = 1000 and kf = 1000,

R′
1 = 1000R1 = 1 kΩ,

R′
2 = 1000R2 = 2 kΩ,

C′ =
1

kmkf

C = 1 µF,

ω ′ = kfω = 103 rad/s.

Repeat of solution with new values leads to

Z′
in = (1− j1) kΩ.
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Exercise 9-4 Convert the following voltage ratios to dB: (a) 20, (b) 0.03, (c) 6×106.

Solution:

(a) 20log 20 = 20×1.301 = 26.02 dB.

(b) 20log 0.03 = 20× (−1.523) =−30.46 dB.

(c) 20log(6×106) = 20log 6+20log 106 = 15.56+120 = 135.56 dB.
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Exercise 9-5 Convert the following dB values to voltage ratios: (a) 36 dB, (b) −24 dB, (c) −0.5 dB.

Solution:

(a) (10)36/20 = 63.1.

(b) (10)−24/20 = 0.063.

(c) (10)−0.5/20 = 0.094.
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Exercise 9-6 Generate a Bode magnitude plot for the transfer function

H =
10(100+ jω)(1000+ jω)

(10+ jω)(104 + jω)
.

Solution: We start by converting the transfer function into standard form:

H =
10×100(1+ jω/100)×1000× (1+ jω/1000)

10(1+ jω/10)×104(1+ jω/104)

=
10(1+ jω/ωc2

)(1+ jω/ωc3
)

(1+ jω/ωc1
)(1+ jω/ωc4

)
,

where

ωc1
= 10 rad/s,

ωc2
= 100 rad/s,

ωc3
= 103 rad/s,

ωc4
= 104 rad/s.

We note:

constant term 10 =⇒ 20 dB

zero factors with ωc2
and ωc3

pole factors with ωc1
and ωc4

.

Sequential addition of terms leads to the solution shown.

ω (rad/s)

dB

20 dB

0
10 100 1000 104

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuit Analysis and Design



Exercise 9-7 Determine the functional form of the transfer function whose Bode magnitude plot is shown

in Fig. E9-7, given that its phase angle at dc is 90◦.

Figure E9.7

ω (rad/s)

dB

40 dB

20 dB

0
2 20 500 5000

Solution: From the plot, the transfer function has:

(1) simple zero factor at ωc1
= 2 rad/s,

(2) simple pole factor at ωc2
= 20 rad/s,

(3) simple zero factor at ωc3
= 500 rad/s,

(4) simple pole factor at ωc4
= 5000 rad/s.

Since at dc, the phase is 90◦, we add a j to the numerator.

H(ω) =
j(1+ jω/2)(1+ jω/500)

(1+ jω/20)(1+ jω/5000)
.
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Exercise 9-8 Show that for the parallel RLC circuit shown in Fig. E9-8, the transfer-impedance transfer

function HZ = VR/Is exhibits a bandpass-filter response.

Figure E9.8

C

+

_

Is VRRL
+

_

Solution: From KCL,

VR

(

1

R
+

1

ZC

+
1

ZL

)

= Is,

we obtain the expression

HZ =
VR

Is

=
jωL

(1−ω2LC)+ jωL/R

=
ω2L2 − jωLR2(1−ω2LC)

R2(1−ω2LC)2 +ω2L2
.

Resonance occurs when imaginary component is zero:

ω0 = 0 (trivial),

ω0 =
1√
LC

.
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Exercise 9-9 How should R be related to L and C so that the denominator of Eq. (9.66) becomes a simple

pole of order 2? What will the value of Q be in that case?

Solution: Denominator of Eq. (9.66):

(1−ω2LC)+ jωRC = 1+( jω
√

LC)2 + jωRC.

For perfect square (1+2x+ x2),

jωRC = 2( jω
√

LC),

or

R2C2 = 4LC,

which gives

R = 2

√

L

C
.

From Eq. (9.61),

Q =
ω0L

R
=

1√
LC

× L

2
√

L/C
=

1

2
.
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Exercise 9-10 Is MBR = 1−MBP?

Solution: No, because MBR = |HBR|= |1−HBP| 6= 1−|HBP|= 1−MBP.
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Exercise 9-11 What is the order of the two-stage bandpass-filter circuit shown in Fig. 9-18(a)?

R

L C L C

+

_

+

_ I1 RI2Vs Vo

Solution: Intuitively, the circuit suggests that each stage is a single order, so the two stages lead to a second-

order filter. To be certain, however, we should analyze the expression for H(ω) given in Example 9-8 as

H(ω) =
ω2R2C2[ω2R2C2 − (1−ω2LC)2 + j3ωRC(1−ω2LC)]

[ω2R2C2 − (1−ω2LC)2]2 +9ω2R2C2(1−ω2LC)2

When the imaginary part is zero, the resonant frequency for L = 10 mH, C = 1 µF and R = 2 Ω is

ω0 =
1√
LC

= 104 rad/s,

and

RC = 2×10−6 s.

1. For ω ≪ ω0, ω2LC ≪ 1 and ωRC ≪ 1. Hence, H(ω) simplifies to

H(ω)≃ ω2R2C2 for ω ≪ ω0.

Thus, the power of ω is 2, suggesting that the filter is second order.

2. For ω ≫ ω0, ω2LC ≫ 1, and

H(ω)≃ ω6R2L2C4

ω8L4C4
=

R2

ω2L2
for ω ≫ ω0.

The power of ω is −2, again confirming that H(ω) is a second-order filter.

~1/ω2

|H(ω)|

~ω2

ω0
ω
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Exercise 9-12 Determine the order of H(ω) = Vout/Vs for the circuit in Fig. E9-12.

Figure E9.12

+

_

Vs VoutR
+

_ L

CC

Solution: Circuit analysis leads to

H(ω) =
jω3RLC2

ω2LC− (1−ω2LC)(1+ jωRC)
.

For ω very large, such that ω2LC >> 1 and ωRC ≫ 1,

H(ω)≃ 1, ω very large.

For ω very small, such that ω2LC ≪ 1 and ωRC ≪ 1,

H(ω)≃ jω3RLC2.

Hence, filter is third order.
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Exercise 9-13 Choose values for Rs and Rf in the circuit of Fig. 9-23(b) so that the gain magnitude is 10 and

the corner frequency is 103 rad/s, given that Cf = 1 µF.

Solution: According to Eq. (8.89),

GLP =−Rf

Rs

=−10,

ωLP =
1

RfCf

= 103 rad/s.

With Cf = 1 µF,

Rf = 1 kΩ, and Rs = 100 Ω.
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Exercise 9-14 What are the values of the corner frequencies associated with M1, M2, and M3 of Example

9-10?

Solution: By plotting the expressions for M1, M2, and M3 and determining the angular frequencies at which

each is 1/
√

2 of its peak value, we can show that

ωc1
= 105 rad/s, ωc2

= 0.64ωc1
, and ωc3

= 0.51ωc1
.

10
4

10
5

56

56.5

57

57.5

58

58.5

59

59.5

60

ωc3

ωc1
ω (rad/s)

ωc2

dB
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Exercise 9-15 The bandreject filter of Example 9-12 uses two lowpass filter stages and two highpass filter

stages. If three stages of each were used instead, what would the expression for H(ω) be in that case?

Solution:

H(ω) = 50

[

(

1

1+ jω/4π ×104

)3

+

(

jω/8π ×104

1+ jω/8π ×104

)3
]

.
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Exercise 10-1 Superimpose onto Fig. 10-4(b) the three source voltages of the ∆ configuration.

Solution:

Figure E10.1

V31

V23

V12

V1

V3

V2

−120o

120o

30o

30o

30o

Im

Re
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Exercise 10-2 Given a balanced ∆-source configuration with a positive phase sequence and V12 = 208∠45◦ V

(rms), determine (a) phase voltages V23 and V31, and (b) V1, V2, and V3 of the equivalent Y-source

configuration.

Solution: (a) For a positive phase sequence, V23 and V31 have the same amplitude as V12, but their phases are

retarded by 120◦ and 240◦, respectively. Hence,

V23 = 208∠45◦−120◦ = 208∠−75◦ V (rms),

V31 = 208∠45◦−240◦ = 208∠−195◦ V (rms).

(b)

V1 =
V12√

3
∠−30◦

=
208√

3
∠45◦−30◦ = 120∠15◦ V (rms)

V2 = V1∠
−120◦ = 120∠−105◦ V (rms)

V3 = V1∠
−240◦ = 120∠−225◦ V (rms).
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Exercise 10-3 Show graphically why the phase magnitude of V12 of the ∆-source is
√

3 times larger than

the phase magnitude of the Y-source.

Solution:

Figure E10.3

V2

V1

30˚

V12 = V1 − V2
−V2

VYs

V∆s

Im

Re
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Exercise 10-4 Were we to repeat Example 10-2, but with the transmission-line impedances set to zero,

which of the following line-current quantities will change and which will remain the same: (a) amplitudes, (b)

absolute phases, and (c) phases relative to each other?

Solution: (a) Amplitudes will change, (b) absolute phases will change, but (c) relative phases will continue to

be 120◦ apart (between pairs).
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Exercise 10-5 Determine IL1
in the balanced Y-Y network of Fig. 10-8, given that V1 = 120∠0◦ V, ZTL =

(2+ j1) Ω and ZY = (28+ j9) Ω.

2
3

n N

V1

V2V3

VN

b

a
IL1

IL3

IL2

ZY

ZY ZY

ZTL

ZTL

ZTL

Vn = 0

1

c

InZn

+

_

+
_

+
_

IL2
 loop IL3

 loopIL1
 loop

n N

V1

a

ZY

1 ZTL IL1

+

_

n N

V2

b

ZY

2 ZTL

+

_

n N

V3

c

ZY

3 ZTL

+

_

IL3
IL2

Solution:

IL1
=

V1

ZTL +ZY

=
120

(2+ j1)+ (28+ j9)

=
120

30+ j10

=
120

31.6e j18.4◦ = 3.80∠−18.4◦ A.
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Exercise 10-6 Prove Eq. (10.26b).

Solution:

cosθ + cos(θ −120◦)+ cos(θ −240◦)

= cosθ + cosθ cos120◦+ sinθ sin120◦+ cosθ cos240◦+ sinθ sin240◦

= cosθ −0.5cos θ +0.86sin θ −0.5cos θ −0.86sin θ

= 0.
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Exercise 10-7 Suppose the circuit shown in Fig. 10-15(a) contains only balanced loads 1 and 2. What value

should C have in order to raise the source’s power factor to 0.92 lagging?

Solution: With only loads 1 and 2,

ST = S1 +S2

= (4800+ j3600)+ (7200+ j9600)

= 12000+ j13200 VA

φ = tan−1

(

13200

12000

)

= 47.73◦

pf s = cosφ = 0.67.

To raise it to pf ′s = 0.92, φ has to change to

φ ′ = cos−1(0.92) = 23.07◦

S′
T = 12000+ j12000tan φ ′

= (12000+ j5111) VA

QC = 5111−13200 =−8089 VAR.

Also

QC =−2V 2
L ωC,

which leads to

C =
−QC

2V 2
L ω

=
8089

2× (1200)2 ×2π ×60
= 7.45 µF.
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Exercise 10-8 When used on a balanced three-phase load, the two-wattmeter method provided

measurements P1 = 4,800 W and P2 = 10,200 W. What is the total complex power ST of the load?

Solution:

PT = P1 +P2 = 4800+10200 = 15000 W

QT =
√

3(P2 −P1) =
√

3(10200−4800) = 9353 VAR.

Hence,

ST = (15000+ j9353) VA.
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Exercise 11-1 Repeat Example 11-1 after moving the dot location on the side of L2 from the top end of the

coil to the bottom.

Solution: Replacing M with −M in Eqs. (11.10a and b) leads to

−Vs +

(

R1 −
j

ωC
+ jωL1

)

I1 + jωMI2 = 0

jωMI1 +

(

jωL2 −
j

ωC
+RL

)

I2 = 0.

Solution is identical to that in Example 11-1 except that M should be replced with −M in Eq. (11.11). Hence,

iL(t) = 139.5cos(2π ×103t +142.2◦−180◦)

= 139.5cos(2π ×103t −37.8◦) mA.
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Exercise 11-2 Repeat Example 11-3 for the two in-series inductors in Fig. 11-6(a), but with the dot location

on L2 being on the top end.

(a)

M

L1a

b

L2Leq

(b)

M

L1I1a

b

L2

V1

V2

++

_

_
+

_Vs

I2

I

(c)
Leq

I a

b

+

_Vs

Solution: Replacing M with −M everywhere in the expressions for V1 and V2 in Example 11-3 leads to

Leq = L1 +L2 − (−2M)

= L1 +L2 +2M.
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Exercise 11-3 The expression for Zin given by Eq. (11.25) was derived for the circuit in Fig. 11-8, in which

both dots are on the upper end of the coils. What would the expression look like were the two dots located on

opposite ends?

(a)  Original circuit

(b)  Equivalent circuit

R1a

b

L1

M

L2

+

_Vs ZL

R2

I1 I2

a

b

+

_Vs Zin
I1

Solution: If the two dots are on opposite ends, M should be replaced with −M, but since Eq. (11.24) is

proportional to M2, the expression for Zin remains unchanged.
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Exercise 11-4 What are the element values of the Π-equivalent circuit of the transformer in Fig. 11-11(a)?

(a)  Original circuit

j5 Ω

j2 Ω
a

b

3 Ω

j20 Ω 4 Ω

−j2 Ω −j4 ΩI1

+

_

6 Ω

120        V30o

(b)  Equivalent circuit

j3 Ω j18 Ωa

b

3 Ω

j2 ΩjωLz

jωLx jωLy
4 Ω

−j2 Ω −j4 ΩI1

+

_

6 Ω

120        V30o I1 I2

Solution: According to Eqs. (11.31a to c),

La =
L1L2 −M2

L1 −M

=
(5/ω)(20/ω)− (2/ω)2

(5/ω)− (2/ω)
=

32

ω
,

Lb =
L1L2 −M2

L2 −M
=

5.33

ω
,

Lc =
L1L2 −M2

M
=

48

ω
.
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Exercise 11-5 Determine the Thévenin equivalent of the circuit to the right of terminals (a,b) in Fig. E11-5.

1 : 4
a

b

+
_

−j64 Ω

12e j60˚ V

32 Ω

Figure E11.5

Solution: Application of Fig. 11-15(b) leads to

ZTh =
32− j64

n2
=

32− j64

16
= (2− j4) Ω,

VTh =−Vs2

n
=

−12e j60◦

4
=−3e j60◦ V.

The negative sign accounts for the fact that the dots are on opposite sides of the transformer.
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Exercise 11-6 An autotransformer is used to step up the voltage by a factor of 10. If N = 200, what are the

values of N1 and N2?

Solution:
V2

V1

=
N

N2

,

or

10 =
200

N2

N2 = 20

and

N = N1 +N2 N1 = 180.
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Exercise 11-7 Determine Ix in the circuit of Fig. 11-18 after replacing the 20-Ω resistor with an open circuit.

+

_
V1 V2

Ix

I1 I2

I3

1 : 4

10 Ω 30 Ω

20 Ω

50 Ω

40 Ω36       V0o

+

_

+

_

Solution: Repeating the solution in Example 11-10 after replacing the 20-Ω resistor with an open circuit gives

−36+(10+50)I1 −50I2 +V1 = 0,

−50I1 +(30+40+50)I2 −V2 = 0.

Also,

V2 =−4V1,

I2 =−I1

4
.

Solution leads to

Ix = I2 =−0.097 A.
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Exercise 12-1 If x(t) is the rectangular pulse shown in Fig. E12-1(a), determine its time derivative x′(t) and

plot it.

Figure E12.1

(a)  x(t)

t (s)

x(t)

2

3 4

(b)  x′(t)

t (s)

x′(t)

2 δ(t − 3)

−2 δ(t − 4)

Solution:

x(t) = 2u(t −3)−2u(t −4),

x′(t) = 2δ (t −3)−2δ (t −4).
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Exercise 12-2 Determine the Laplace transform of (a) [sin(ωt)] u(t), (b) e−at u(t), and (c) t u(t). Assume

all waveforms are zero for t < 0.

Solution:

(a) [sinωt] u(t)

F(s) =

∫ ∞

0−
[sinωt] u(t) e−st dt.

Application of the identity

sinωt =
e jωt − e− jωt

2 j
,

F(s) =
1

2 j

∫ ∞

0
e jωte−st dt − 1

2 j

∫ ∞

0
e− jωte−st dt

=
1

2 j

(

e( jω−s)t

jω − s
− e−( jω+s)t

−( jω + s)

)∣

∣

∣

∣

∣

∞

0

=
1

2 j

( −1

jω − s
+

−1

jω + s

)

=
ω

s2 +ω2
.

(b) e−at u(t)

F(s) =
∫ ∞

0−
e−at u(t) e−st dt

=

∫ ∞

0
e−(a+s)t dt =

e−(a+s)t

−(a+ s)

∣

∣

∣

∣

∣

∞

0

=
1

s+a
.

(c) t u(t)

F(s) =
∫ ∞

0
te−st dt.

Using the integral relation
∫

xeax dx =
eax

a2
(ax−1),

we have

F(s) =
e−st

s2
(−st −1)

∣

∣

∣

∣

∞

0

=
1

s2
.
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Exercise 12-3 Determine L [sin ω(t −T) u(t −T )].

Solution: According to Exercise 6-9(a),

sinωt
ω

s2 +ω2
.sin ωt

ω

s2 +ω2
.

Application of the shift property given by Eq. (6.53)

f (t −T) u(t −T ) e−T s F(s)

leads to

sinω(t −T) u(t −T) e−T s ω

s2 +ω2
.
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Exercise 12-4 (a) Prove Eq. (12.27) and (b) apply it to determine L [e−at cos ωt].

Solution:

(a) If

f (t) F(s),

then
∫ ∞

0−
e−at f (t) e−st dt =

∫ ∞

0−
f (t) e−(s+a)t dt

=

∫ ∞

0−
f (t) e−s′t dt

= F(s′)

= F(s+a),

where we temporarily used the substitution

s′ = s+a.

Hence,

e−at f (t) F(s+a).

(b) Since

cosωt
s

s2 +ω2
,

it follows that

e−at cosωt
(s+a)

(s+a)2 +ω2
.
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Exercise 12-5 Obtain the Laplace transform of: (a) f1(t)= 2(2−e−t) u(t) and (b) f2(t) = e−3t cos(2t +30◦) u(t).

Solution:

(a)

f1(t) = 2(2− e−t) u(t)

= (4−2e−t) u(t).

By entries 2 and 3 in Table 12-2,

F1(s) =
4

s
− 2

s+1
=

4s+4−2s

s(s+1)
=

2s+4

s(s+1)
.

(b)

f2(t) = e−3t cos(2t +30◦) u(t)

= e−3t fa(t),

with

fa(t) = cos(2t +20◦) u(t).

Applying entry #12 in Table 12-2 gives

Fa(s) =
scos 30◦−2sin30◦

s2 +4
=

0.866s−1

s2 +4
.

Application of Property 5 in Table 12-1 leads to

F2(s) = Fa(s+3)

=
0.866(s+3)−1

(s+3)2 +4

=
0.866s+1.6

s2 +6s+13
.
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Exercise 12-6 Apply the partial-fraction expansion method to determine f (t), given that its Laplace

transform is

F(s) =
10s+16

s(s+2)(s+4)
.

Solution: By partial-fraction expansion,

F(s) =
A1

s
+

A2

s+2
+

A3

s+4
,

with

A1 = s F(s)|s=0

=
10s+16

(s+2)(s+4)

∣

∣

∣

∣

s=0

= 2,

A2 = (s+2) F(s)|s=−2

=
10s+16

s(s+4)

∣

∣

∣

∣

s=−2

=
−20+16

−2(2)
= 1,

A3 = (s+4) F(s)|s=−4

=
10s+16

s(s+2)

∣

∣

∣

∣

s=−4

=
−40+16

−4(−2)
=−3.

Hence,

F(s) =
2

s
+

1

s+2
− 3

s+4
,

and

f (t) = [2+ e−2t −3e−4t ] u(t).
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Exercise 12-7 Determine the inverse Laplace transform of

F(s) =
4s2 −15s−10

(s+2)3
.

Solution:

F(s) =
4s2 −15s−10

(s+2)3
.

By partial-fraction expansion,

F(s) =
B1

s+2
+

B2

(s+2)2
+

B3

(s+2)3
,

with

B3 = (s+2)3 F(s)
∣

∣

s=−2

= 4s2 −15s−10
∣

∣

s=−2
= 16+30−10 = 36,

B2 =
d

ds
[(s+2)3 F(s)]

∣

∣

s=−2

=
d

ds
(4s2 −15s−10)

∣

∣

s=−2
= 8s−15|s=−2 =−31,

B1 =
1

2

d

ds2
(4s2 −15s−10)

∣

∣

s=−2
= 4.

Hence,

F(s) =
4

s+2
− 31

(s+2)2
+

36

(s+2)3
.

By entries 3, 6, and 7 in Table 12-2,

f (t) = (4−31t +18t2)e−2t u(t).
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Exercise 12-8 Determine the inverse Laplace transform of

F(s) =
2s+14

s2 +6s+25
.

Solution:

F(s) =
2s+14

s2 +6s+25

=
2s+14

(s+3− j4)(s+3+ j4)
.

By partial fraction expansion

F(s) =
B1

s+3− j4
+

B∗
1

s+3+ j4
,

with

B1 = (s+3− j4) F(s)|s=−3+ j4

=
(2s+14)

(s+3+ j4)

∣

∣

∣

∣

s=−3+ j4

=
−6+ j8+14

j8
= 1− j =

√
2 e− j45◦ .

Hence,

F(s) =

√
2 e− j45◦

s+3− j4
+

√
2 e j45◦

s+3+ j4
.

By entry #15 in Table 12-2,

f (t) = [2
√

2 e−3t cos(4t −45◦)] u(t).
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Exercise 12-9 Convert the circuit in Fig. E12.9 into the s-domain.

Figure E12.9

R1

R2

C

L

+

_υs(t)

iL

Solution:

R1

R2

LiL(0−)
sL

+

_Vs

+_

1

sC
CυC(0−)
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Exercise 13-1 Obtain the Fourier-series representation for the waveform shown in Fig. E13.1.

f(t)

−4 −2

−10

t (s)
2 40

0

10

Figure E13.1

Solution: For the cycle from t =−2 s to t = 2 s, the waveform is given by

f (t) =

{

5t for −2 ≤ t ≤ 0

10−5t for 0 ≤ t ≤ 2.

With T = 4 s and ω0 = 2π/T = π/2 rad/s,

a0 =
1

T

∫ 2

−2
f (t) dt

=
1

4

[

∫ 0

−2
5t dt +

∫ 2

0
(10−5t) dt

]

= 0,

an =
2

T

∫ T/2

−T/2
f (t)cos nω0t dt

=
1

2

[

∫ 0

−2
5t cos

nπt

2
dt +

∫ 2

0
(10−5t)cos

nπt

2
dt

]

.

Using the integral relationship given in Appendix D-2 as

∫

xcos ax dx =
1

a2
cosax+

x

a
sinax,

we have

an =
20

n2π2
(1− cosnπ).

Similarly, using the relation
∫

xsin ax dx =
1

a2
sinax+

x

a
cos ax,
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we have

bn =
2

T

∫ T/2

−T/2
f (t) sinnω0t dt

=
1

2

[

∫ 0

−2
5t sin

nπt

2
dt +

∫ 2

0
(10−5t)sin

nπt

2
dt

]

=
10

nπ
(1− cosnπ).

Hence,

f (t) =
∞

∑
n=1

[

20

n2π2
(1− cosnπ)cos

nπt

2

+
10

nπ
(1− cosnπ)sin

nπt

2

]

.
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Exercise 13-2 Obtain the line spectra associated with the periodic function of Exercise 13.1.

Solution:

An =
√

a2
n +b2

n

=

{

[

20

n2π2
(1− cosnπ)

]2

+

[

10

nπ
(1− cosnπ)

]2
}1/2

= (1− cosnπ)
20

n2π2

√

1+
n2π2

4
,

φn =− tan−1

(

bn

an

)

=− tan−1
(nπ

2

)

.

We note that An = 0 when n = even.
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Exercise 13-3 (a) Does the waveform f (t) shown in Fig. E13.3 exhibit either even or odd symmetry? (b)

What is the value of a0? (c) Does the function g(t) = f (t)−a0 exhibit either even or odd symmetry?

Figure E13.3

f(t)

t (s)
−3−4 1

0

0 4 5 6

3

1

−1

2

−1−2 32

Solution:

(a)

f (t) 6= f (−t) no even symmetry

f (t) 6=− f (−t) no odd symmetry

(b)

a0 =
2×1+3×1+(−1)×1

4
= 1.

(c) g(t) = [ f (t)−a0] has odd symmetry.
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Exercise 13-4 The RL circuit shown in Fig. E13.4(a) is excited by the square-wave voltage waveform of

Fig. E13.4(b). Determine υout(t).

Figure E13.4

+

_

+

_ υout(t)υs(t)

R

L

(b)

(a)

t (s)
0

0

1

3

υs (V)

1

−1

−1

2

Solution: From the waveform, we deduce that

T = 2 s, ω0 =
2π

T
= π rad/s, A = 1 V.

Step 1

From entry #2 in Table 13-2,

υs(t) =
∞

∑
n=1

n=odd

4A

nπ
sin

(

2πnt

T

)

=
∞

∑
n=1

n=odd

4

nπ
sin nπt

=
∞

∑
n=1

n=odd

4

nπ
cos(nπt −90◦) V.

Thus,

An =
4

nπ
, φn =−90◦.
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Step 2

H(ω) =
Vout(ω)

Vs(ω)
=

jωL

R+ jωL
.

Step 3

With ω0 = π rad/s and φn =−90◦,

υout(t) = a0 H(ω = 0)+
∞

∑
n=1

An Re{H(ω = nω0) e j(nω0t+φn)}

=
∞

∑
n=1

n=odd

4

nπ
Re

{

jnω0L

R+ jnω0L
e j(nω0t+φn)

}

=
∞

∑
n=1

n=odd

4L√
R2 +n2π2L2

cos(nπt +θn) V,

with

θn =− tan−1

(

nπL

R

)

.
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Exercise 13-5 What will the expression given by Eq. (13.43) simplify to if the associated circuit segment is

(a) purely resistive or (b) purely reactive?

Solution: (a) Pav = VdcIdc +
1
2 ∑∞

n=1VnIn, because φυn
= φin , (b) Pav = 0, because for a capacitor, Idc = 0 and

φυn
−φin = 90◦; and for an inductor, Vdc = 0 and φυn

−φin =−90◦.
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Exercise 13-6 For a single rectangular pulse of width τ , what is the spacing ∆ω between first nulls? If τ is

very wide, will its frequency spectrum be narrow and peaked or wide and gentle?

Solution: ∆ω = 4π/τ . Wide τ leads to narrow spectrum.
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Exercise 13-7 Use the entries in Table 13-4 to determine the Fourier transform of u(−t).

Solution: From Table 13-4,

sgn(t)
2

jω
,

u(t) π δ (ω)+
1

jω
.

Also,

sgn(t) = u(t)−u(−t).

Hence,

u(−t) = u(t)− sgn(t),

and the corresponding Fourier transform is

u(−t) π δ (ω)+
1

jω
− 2

jω

= π δ (ω)− 1

jω
.
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Exercise 13-8 Verify the Fourier transform expression for entry #10 in Table 13-4.

Solution:

cos ω0t f (t) =

(

e jω0t + e− jω0t

2

)

f (t).

Applying Property 5 in Table 13-5,

1

2
e jω0t f (t)

1

2
F(ω −ω0),

1

2
e− jω0t f (t)

1

2
F(ω +ω0).

Hence,

cosω0t f (t)
1

2
[F(ω −ω0)+F(ω +ω0)].
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Exercise 13-9 Verify the reversal property given by Eq. (13.85).

Solution: By the definition given by Eq. (13.65a),

F(ω) =

∫ ∞

−∞
f (t) e− jωt dt.

Replacing ω with −ω gives

F(−ω) =
∫ ∞

−∞
f (t) e jωt dt,

which is the same as the complex conjugate F∗(ω):

F∗(ω) =

∫ ∞

−∞
f (t) e jωt dt.

Hence,

F(−ω) = F∗(ω).
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